Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO (α-MoO) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 10 and a low detection limit of 5 × 10 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c01435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!