Primer on fibroblast growth factor 7 (FGF 7).

Differentiation

Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. Electronic address:

Published: September 2024

AI Article Synopsis

  • FGF7, also known as KGF, primarily influences epithelial cells and is expressed in various tissues, including the urinary, gastrointestinal, and respiratory systems, as well as skin and reproductive organs.
  • FGF7 activates several important signaling pathways (Ras, PI3K-Akt, PLCs) through its interaction with FGFR2-IIIb, playing key roles in organ development and tissue maintenance.
  • Its involvement in several heritable and acquired diseases, as well as various forms of cancer, presents potential therapeutic avenues for targeting FGF7 pathways to improve treatment outcomes.

Article Abstract

Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), is an important member of the FGF family that is mainly expressed by cells of mesenchymal origin while affecting specifically epithelial cells. Thus, FGF7 is widely expressed in diverse tissues, especially in urinary system, gastrointestinal tract (GI-tract), respiratory system, skin, and reproductive system. By interacting specifically with FGFR2-IIIb, FGF7 activates several downstream signal pathways, including Ras, PI3K-Akt, and PLCs. Previous studies of FGF7 mutants also have implicated its roles in various biological processes including development of essential organs and tissue homeostasis in adults. Moreover, more publications have reported that FGF7 and/or FGF7/FGFR2-IIIb-associated signaling pathway are involved in the progression of various heritable or acquired human diseases: heritable conditions like autosomal dominant polycystic kidney disease (ADPKD) and non-syndromic cleft lip and palate (NS CLP), where it promotes cyst formation and affects craniofacial development, respectively; acquired non-malignant diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), mucositis, osteoarticular disorders, and metabolic diseases, where it influences inflammation, repair, and metabolic control; and tumorigenesis and malignant diseases, including benign prostatic hyperplasia (BPH), prostate cancer, gastric cancer, and ovarian cancer, where it enhances cell proliferation, invasion, and chemotherapy resistance. Targeting FGF7 pathways holds therapeutic potential for managing these conditions, underscoring the need for further research to explore its clinical applications. Having more insights into the function and underlying molecular mechanisms of FGF7 is warranted to facilitate the development of effective treatments in the future. Here, we discuss FGF7 genomic structure, signal pathway, expression pattern during embryonic development and in adult organs and mutants along with phenotypes, as well as associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diff.2024.100801DOI Listing

Publication Analysis

Top Keywords

growth factor
12
fibroblast growth
8
fgf7
8
diseases
5
primer fibroblast
4
factor fgf
4
fgf fibroblast
4
factor fgf7
4
fgf7 keratinocyte
4
keratinocyte growth
4

Similar Publications

A prospective, phase II, neoadjuvant study based on chemotherapy sensitivity in HR+/HER2- breast cancer-FINEST study.

Cancer Commun (Lond)

January 2025

Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Centre, Shanghai, P. R. China.

Background: Hormone receptor-positive (HR+)/humaal growth factor receptor 2-negative (HER2-) breast cancer, the most common breast cancer type, has variable prognosis and high recurrence risk. Neoadjuvant therapy is recommended for median-high risk HR+/HER2- patients. This phase II, single-arm, prospective study aimed to explore appropriate neoadjuvant treatment strategies for HR+/HER2- breast cancer patients.

View Article and Find Full Text PDF

Cysteine-Specific F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging.

J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China.

Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (), the integrin αβ (), and the platelet-derived growth factor receptor β (), with a radiochemical yield exceeding 90%.

View Article and Find Full Text PDF

Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling.

Neuropsychopharmacol Rep

March 2025

Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process.

View Article and Find Full Text PDF

As an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!