A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NLRP1B allele 2 does not respond to Val-boro-Pro (VbP) in intestinal epithelial cells. | LitMetric

NLRP1B allele 2 does not respond to Val-boro-Pro (VbP) in intestinal epithelial cells.

Microbes Infect

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada. Electronic address:

Published: November 2024

The intestinal mucosa must balance tolerance to commensal microbes and luminal antigens with rapid detection of enteric pathogens in order to maintain homeostasis. This balance is facilitated through the regulation of epithelial layer integrity by innate immune receptors. Certain NOD-like receptors (NLRs) expressed in intestinal epithelial cells, including NLRC4 and NLRP9B, form inflammasomes that protect against pathogens by activating caspase-1 to cause extrusion of infected cells. NLRP1B is a murine NLR encoded by five alleles of a highly polymorphic gene homologous to human NLRP1. NLRP1B forms inflammasomes in response to a variety of pathogens that cause intestinal infections, but it has almost exclusively been studied in immune cells and has not been characterized in cells of the intestinal epithelium. Here, we show that Nlrp1b allele 2 is expressed in ileal and colonic organoids derived for C57BL/6J mice, while the related gene Nlrp1a was not expressed. Nlrp1b was upregulated by interleukin-13 in organoids and by the protozoan Tritrichomonas muris in vivo, suggesting that NLRP1B may be involved in defense against enteric parasites. Surprisingly, while Val-boro-Pro (VbP) activated C57BL/6J-derived bone marrow-derived macrophages, which expressed both Nlrp1a and Nlrp1b, it did not activate intestinal organoids of the same genotype. We furthermore did not detect Nlrp1b in organoids derived from Balb/cJ mice, which express a different allele than the one expressed in C57BL/6J mice. Together, our results suggest that NLRP1B may have an allele-dependent function in murine IECs whose regulation is distinct from that of macrophages, and that the response to VbP might be exclusively driven by NLRP1A in C57BL/6J mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2024.105398DOI Listing

Publication Analysis

Top Keywords

c57bl/6j mice
12
nlrp1b
9
nlrp1b allele
8
val-boro-pro vbp
8
intestinal epithelial
8
epithelial cells
8
cells intestinal
8
allele expressed
8
organoids derived
8
intestinal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!