The increasing atmospheric CO concentration is a global concern that affects the plant-bacteria-soil system. Previous studies have investigated plant growth and bacteria activity under CO enrichment. However, the effects of coupled elevated CO and biochar amendment on the interactions of soil and medicinal plants are not well understood. This study aims to investigate the medicinal plant-soil hydraulic interactions and rhizosphere bacteria communities under coupled CO enrichment and biochar conditions. Two levels of CO concentration (400, 1000 ppm) and two biochar dosages (3%, 5% by mass) were considered. Pseudostellaria heterophylla was used as the tested medicinal plant. During plant growth, coupled CO enrichment and biochar at 3% and 5% dosage increased the volumetric water content at a matric suction of 33 kPa by 97% and 82% respectively, which indicates enhanced water retention. The transpiration rate of P. heterophylla was slightly reduced by 11-30% with an increase in biochar dosage due to higher total suction, while it was significantly reduced by up to 57% due to CO enrichment. In the rhizosphere of P. heterophylla, elevated CO (1000 ppm) coupled with 3% biochar dramatically increase the relative abundance of Thaumarchaeota, which played an important role in C and N cycles. Moreover, coupled CO enrichment and biochar addition resulted in the highest bacterial richness, while 3% biochar at ambient CO induced the highest bacterial diversity. This study provides a basis for understanding the medicinal plant-bacteria-soil system under CO enrichment and biochar conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174943 | DOI Listing |
Environ Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFEnviron Res
January 2025
Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:
Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition.
View Article and Find Full Text PDFWater Res
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.
The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:
Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!