Furfural-tolerant and hydrogen-producing microbial consortia were enriched from soil, with hydrogen production of 259.84 mL/g-xylose under 1 g/L furfural stress. The consortia could degrade 2.5 g/L furfural within 24 h in the xylose system, more efficient than in the sugar-free system. Despite degradation of furfural to furfuryl alcohol, the release of reactive oxygen species and lactate dehydrogenase was also detected, suggesting that furfuryl alcohol is also a potential inhibitor of hydrogen production. The butyrate/acetate ratio was observed to decrease with increasing furfural concentration, leading to decreased hydrogen production. Furthermore, microbial community analysis suggested that dominated Clostridium butyricum was responsible for furfural degradation, while Clostridium beijerinckii reduction led to hydrogen production decrease. Overall, the enriched consortia in this study could efficiently degrade furfural and produce hydrogen, providing new insights into hydrogen-producing microbial consortia with furfural tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!