NanoRanger enables rapid single-base-pair resolution of genomic disorders.

Med

Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. Electronic address:

Published: October 2024

Background: Delineating base-resolution breakpoints of complex rearrangements is crucial for an accurate clinical understanding of pathogenic variants and for carrier screening within family networks or the broader population. However, despite advances in genetic testing using short-read sequencing (SRS), this task remains costly and challenging.

Methods: This study addresses the challenges of resolving missing disease-causing breakpoints in complex genomic disorders with suspected homozygous rearrangements by employing multiple long-read sequencing (LRS) strategies, including a novel and efficient strategy named nanopore-based rapid acquisition of neighboring genomic regions (NanoRanger). NanoRanger does not require large amounts of ultrahigh-molecular-weight DNA and stands out for its ease of use and rapid acquisition of large genomic regions of interest with deep coverage.

Findings: We describe a cohort of 16 familial cases, each harboring homozygous rearrangements that defied breakpoint determination by SRS and optical genome mapping (OGM). NanoRanger identified the breakpoints with single-base-pair resolution, enabling accurate determination of the carrier status of unaffected family members as well as the founder nature of these genomic lesions and their frequency in the local population. The resolved breakpoints revealed that repetitive DNA, gene regulatory elements, and transcription activity contribute to genome instability in these novel recessive rearrangements.

Conclusions: Our data suggest that NanoRanger greatly improves the success rate of resolving base-resolution breakpoints of complex genomic disorders and expands access to LRS for the benefit of patients with Mendelian disorders.

Funding: M.L. is supported by KAUST Baseline Award no. BAS/1/1080-01-01 and KAUST Research Translation Fund Award no. REI/1/4742-01.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medj.2024.07.003DOI Listing

Publication Analysis

Top Keywords

genomic disorders
12
breakpoints complex
12
single-base-pair resolution
8
base-resolution breakpoints
8
complex genomic
8
homozygous rearrangements
8
rapid acquisition
8
genomic regions
8
genomic
6
nanoranger
5

Similar Publications

Mechanisms of Homoarginine: Looking Beyond Clinical Outcomes.

Acta Physiol (Oxf)

February 2025

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.

View Article and Find Full Text PDF

Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus.

View Article and Find Full Text PDF

Unlabelled: The concept of genome-microbiome interactions, in which the microenvironment determined by host genetic polymorphisms regulates the local microbiota, is important in the pathogenesis of human disease. In otolaryngology, the resident bacterial microbiota is reportedly altered in non-infectious ear diseases, such as otitis media pearls and exudative otitis media. We hypothesized that a single-nucleotide polymorphism in the ATP-binding cassette sub-family C member 11 () gene, which determines earwax properties, regulates the ear canal microbiota.

View Article and Find Full Text PDF

MultiTax-human: an extensive and high-resolution human-related full-length 16S rRNA reference database and taxonomy.

Microbiol Spectr

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Considering that the human microbiota plays a critical role in health and disease, an accurate and high-resolution taxonomic classification is thus essential for meaningful microbiome analysis. In this study, we developed an automatic system, named MultiTax pipeline, for generating taxonomy from full-length 16S rRNA sequences using the Genome Taxonomy Database and other existing reference databases. We first constructed the MultiTax-human database, a high-resolution resource specifically designed for human microbiome research and clinical applications.

View Article and Find Full Text PDF

Background: Studies have suggested associations between montelukast and increased risks of sleep disorders, including overall sleeping problems and insomnia. However, the results of observational studies are not consistent. Understanding these associations is crucial, particularly in patients solely diagnosed with allergic rhinitis, where montelukast use remains prevalent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!