Illite plays an essential role in arsenic (As) transportation in the subsurface. Despite extensive investigations into As adsorption onto illite, debates persist due to the absence of direct evidence revealing the underlying processes. In this research, we conducted batch experiments and employed spherical aberration-corrected scanning transmission electron microscope, X-ray absorption spectroscopy, and density functional theory-based calculations to elucidate the mechanisms for the adsorption of two major inorganic As species (As(III) and As(V)) onto illite. Experimental results indicate adsorption capacities of 0.251 and 0.667 μmol/g for As(III) and As(V) onto illite, respectively. As(III) adsorption occurs within 300 min, whereas As(V) is rapidly adsorbed within 500 min, after which it tends to stabilize. Both As species can adsorbed onto the basal surface via electrostatic forces, where cations act as a bridge, leading to specific-cation effects. Conversely, As adsorption onto the edge surface can be ascribed to inner-sphere complexes via As-O-Al bonds, causing a negatively shifted isoelectric point of illite. These mechanisms collectively account for the partially reversible adsorption and two-stage kinetics pattern. Finally, a process-based surface complexation model was developed to predict As adsorption onto illite, which includes the inner/outer-sphere complexation and monodentate/bidentate complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135284 | DOI Listing |
Environ Res
January 2025
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China.
Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).
View Article and Find Full Text PDFRSC Adv
November 2024
Faculty of Sciences of Bizerte, LR 05/ES09 Laboratory of Applications of Chemistry to Resources and Natural Substances and to the Environment (LACReSNE), Carthage University Zarzouna 7021 Tunisia
This study seeks to characterize three different clays and compare their capability to decontaminate a textile effluent using the adsorption process and to explore the synergistic effects of ozonation on the treatment. Response surface methodology, based on central composite design, was used to investigate the impact of three key parameters, namely, solution pH, clay dosage, and contact time, on the adsorption process. The three clays were sourced from distinct regions across Tunisia: Rommana, Tabarka, and Medenine.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China. Electronic address:
In the study, cotransport of fullerene nanoparticles (nC) and mobile clay colloids (illite (ILL), kaolinite (KL), montmorillonite (ML)) in aquifer porous media and its relation to the aggregative interaction between these two types of particles was investigated. Minimal interaction occurred between nC and ILL, resulting in unaffected transport. Strong heteroaggregation between ML and nC resulted in not only significant retention of both particles during their cotransport but also the retention of nC in the media pre-injected with ML.
View Article and Find Full Text PDFACS Omega
November 2024
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.
The pore throat structure and microheterogeneous wettability of tight sandstone reservoirs are complex, which leads to varying asphaltene precipitation locations, contents, and distributions in different pores during CO flooding. Clarifying the heterogeneous wettability of different pore throat structures and their effects on asphaltene precipitation and adsorption is crucial for improving CO displacement efficiency. A series of experiments were conducted in this study, including X-ray diffraction (XRD), cast thin section (CTS), field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), environmental scanning electron microscopy (E-SEM), nuclear magnetic resonance (NMR), and CO flooding experiments, to investigate the pore structure complexity of tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China.
View Article and Find Full Text PDFPore structure can affect the reservoir property, petrophysics, and fluid migration/adsorption, which is critical for shale evaluation and development. In this paper, the pore structure, fractal characteristics, and their influencing factors on low-resistivity shale (LRS) from the Longmaxi Formation in the Southern Sichuan Basin were analyzed by combining geochemistry experiments, physical property analysis, X-ray diffraction, scanning electron microscopy (SEM), N/CO gas adsorption experiments, and nuclear magnetic resonance (NMR). The results indicate that in LRS, the layered clay mineral/pyrite distribution and more developed pores with a larger size and better connectivity can build a complex and superior conductive network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!