Targeted delivery of berberine using bionic nanomaterials for Atherosclerosis therapy.

Biomed Pharmacother

College of traditional Chinese medicine, Binzhou Medical University, Yantai 264000, China. Electronic address:

Published: September 2024

Atherosclerosis (AS) is a prevalent chronic vascular inflammatory disease globally, initiated by injury to vascular endothelial cells (VECs). Macrophages play a pivotal role in disease pathogenesis, involving lipid metabolism and inflammation. The application of nanomaterials has been hindered by their rapid clearance by the immune system. Utilizing macrophage cell membranes can mitigate abnormal immune responses and induce a "homing" effect. Here, M2 macrophage cell membranes (M2) were coated onto berberine polylactic-hydroxylase-polylactide (PLGA) nanoparticles (BBR NPs), employing M2 macrophage immune escape, "homing" ability, and membrane coating nanotechnology, and loaded with mannose (Man) to create bionic nanoparticles (BBR NPs@Man/M2). Subsequently, the physical properties of BBR NPs@Man/M2 were characterized. The biocompatibility and biological function of BBR NPs@Man/M2 were assessed in vitro. Finally, the targeting, therapeutic efficacy, and safety of BBR NPs@M2 were investigated in an AS mouse model. The newly developed BBR NPs@Man/M2 exhibited good biocompatibility. Owing to their M2 coating, the nanoparticles effectively targeted macrophages in vitro, inducing a shift from a pro-inflammatory to an anti-inflammatory state. This transition reduced inflammation in endothelial cells and facilitated the repair of damaged endothelial cells. Moreover, M2-coated nanoparticles efficiently targeted and accumulated in atherosclerotic lesions in vivo. Following four weeks of treatment, BBR NPs@Man/M2 significantly delayed AS progression. Furthermore, BBR NPs@Man/M2 demonstrated a good safety profile after long-term administration. In conclusion, BBR NPs@Man/M2 effectively and safely inhibited AS progression. Biomimetic nanoparticles represent a promising approach for the safe and effective delivery of anti-AS drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117135DOI Listing

Publication Analysis

Top Keywords

bbr nps@man/m2
28
endothelial cells
12
bbr
9
macrophage cell
8
cell membranes
8
nanoparticles bbr
8
nps@man/m2
7
nanoparticles
5
targeted delivery
4
delivery berberine
4

Similar Publications

Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.

Sci China Life Sci

January 2025

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.

Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing.

View Article and Find Full Text PDF

Berberine modulates microglial polarization by activating TYROBP in Alzheimer's disease.

Phytomedicine

December 2024

Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China. Electronic address:

Background: Characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, and aberrant neuroinflammation in the brain, Alzheimer's disease (AD) is the most common neurodegenerative disease. Microglial polarization is a subtle mechanism which maintains immunological homeostasis and has emerged as a putative therapeutic to combat AD. Berberine (BBR) is a natural alkaloid compound with multiple pharmacological effects, and has shown considerable therapeutic potential against inflammatory disorders.

View Article and Find Full Text PDF

Background: N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME).

View Article and Find Full Text PDF

Targeted delivery of berberine using bionic nanomaterials for Atherosclerosis therapy.

Biomed Pharmacother

September 2024

College of traditional Chinese medicine, Binzhou Medical University, Yantai 264000, China. Electronic address:

Atherosclerosis (AS) is a prevalent chronic vascular inflammatory disease globally, initiated by injury to vascular endothelial cells (VECs). Macrophages play a pivotal role in disease pathogenesis, involving lipid metabolism and inflammation. The application of nanomaterials has been hindered by their rapid clearance by the immune system.

View Article and Find Full Text PDF

Cancer is one of the most lethal diseases all over the world. Despite that many drugs have been developed for cancer therapy, they still suffer from various limitations including poor treating efficacy, toxicity to normal human cells, and the emergence of multidrug resistance. In this study, the amphiphilic LHES polymers were prepared using hydroxyethyl starch (HES) and linoleic acid as starting materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!