Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a promising liquid hydrogen carrier, formic acid is essential for hydrogen energy. Glucose, as the most widely distributed monosaccharide in nature, is valuable for co-electrolysis with water to produce formic acid and hydrogen, though achieving high formate yield and current density remains challenging. Herein, a nanostructured NiCoP on a 3D Ni foam catalyst enables efficient electrooxidation of glucose to formate, achieving an 85% yield and 200 mA current density at 1.47 V vs RHE. The catalyst forms a NiCoOOH/NiCoP/Ni foam sandwich structure via anodic oxidative reconstruction, with NiCoOOH as the active site and NiCoP facilitating electron conduction. Additionally, NiCoP/Ni foam serves as both an anode and cathode for the production of formate and hydrogen from wood-extracted sugar solutions. At 2.1 V, it reaches a 300 mA current density, converting mixed sugars to formate with a 74% yield and producing hydrogen at 104 mL cm h with near 100% Faradaic efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02315 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!