Polyoxymethylene Upcycling into Methanol and Methyl Groups Catalyzed by a Manganese Pincer Complex.

J Am Chem Soc

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.

Published: August 2024

Polyoxymethylene (POM) is a commonly used engineering thermoplastic, but its recycling by conventional means, i.e., mechanical recycling, is not practiced to any meaningful extent, due to technical limitations. Instead, waste POM is typically incinerated or disposed in landfills, where it becomes a persistent environmental pollutant. An attractive alternative to mechanical recycling is upcycling, namely, the conversion of waste POM into value-added chemicals, but this has received very little attention. Herein, we report the upcycling of POM into useful chemicals through three different reactions, all of which are efficiently catalyzed by a single pincer complex of earth-abundant manganese. One method involves hydrogenation of POM into methanol using H gas as the only reagent, whereas another method converts POM into methanol and CO through a one-pot process comprising acidolysis followed by Mn-catalyzed disproportionation. The third method utilizes POM as a reagent for the methylation of ketones and amines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311220PMC
http://dx.doi.org/10.1021/jacs.4c07468DOI Listing

Publication Analysis

Top Keywords

pincer complex
8
mechanical recycling
8
waste pom
8
pom methanol
8
pom
7
polyoxymethylene upcycling
4
upcycling methanol
4
methanol methyl
4
methyl groups
4
groups catalyzed
4

Similar Publications

Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.

View Article and Find Full Text PDF

An open-shell Ir(II)/Ir(IV) redox couple outperforms an Ir(I)/Ir(III) pair in olefin isomerization.

Nat Chem

January 2025

Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.

Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for Ir complexes, as there is very limited information available regarding their application in catalysis.

View Article and Find Full Text PDF

A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.

View Article and Find Full Text PDF

Protolysis of AlMe or AlEt with 2-diisopropylphosphinopyrrole () resulted in alane/bis(phosphine) pincer ligands containing two flanking phosphines and a central Al-Me (), Al-Et () unit. Reactions of with [(COD)MI] (COD = 1,5-cyclooctadiene; M = Rh or Ir) in the presence of pyridine produced pincer complexes ( and ) with M supported by the PAlP tridentate ligand, and pyridine, methyl, and iodide as monodentate ligands for Al or M. The analogous reaction of with [(COD)MI] and pyridine resulted in the formation of the analogous compounds and with hydride in place of methyl.

View Article and Find Full Text PDF

Chloride, Alkoxide, or Silicon: The Bridging Ligand Dictates the Spin State in Dicobalt Expanded Pincer Complexes.

Organometallics

January 2025

Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

We report the synthesis and characterization of a series of high- and low-spin dicobalt complexes of the PNNP expanded pincer ligand. Reacting this dinucleating ligand in its neutral form with two equiv of CoCl(tetrahydrofuran) yields a high-spin dicobalt complex featuring one Co inside and one Co outside of the dinucleating pocket. Performing the same reaction in the presence of two equivalents of KOtBu provides access to a high-spin dicobalt complex wherein both Co centers are bound within the PNNP pocket, and this complex also features a bridging OtBu ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!