Switching Selectivity in Borylative Allyl-Allyl Cross-Coupling through Synergistic Catalysis.

J Am Chem Soc

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Published: August 2024

A Cu/Pd-catalyzed borylative coupling of allenes with allyl carbonates is reported. Synergistic Cu/Pd catalysis enables a divergent selectivity compared to Cu catalysis and allows for the regio-, diastereo-, and enantioselective formation of synthetically versatile chiral borylated 1,5-dienes featuring two adjacent tertiary stereocenters. DFT calculations support a closed inner-sphere S2' transmetalation between the catalytic allyl copper and allyl palladium intermediates and point at the reductive elimination of the resulting bis(allyl)Pd intermediate as the regio- and diastereo-determining step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311230PMC
http://dx.doi.org/10.1021/jacs.4c07188DOI Listing

Publication Analysis

Top Keywords

switching selectivity
4
selectivity borylative
4
borylative allyl-allyl
4
allyl-allyl cross-coupling
4
cross-coupling synergistic
4
synergistic catalysis
4
catalysis cu/pd-catalyzed
4
cu/pd-catalyzed borylative
4
borylative coupling
4
coupling allenes
4

Similar Publications

An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

Objective: CSF leaks are a significant source of patient morbidity following intradural spine surgeries. Watertight dural closure is crucial during these procedures to minimize the risk of a CSF leak. This study reports postoperative outcomes and changes in patient management after switching to penetrating titanium clips for dural closure in a large cohort of pediatric patients receiving a tethered cord release (TCR) or a selective dorsal rhizotomy (SDR).

View Article and Find Full Text PDF

Metal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiVO(OCH) with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis.

View Article and Find Full Text PDF

Ultra-Fast Moisture Sensor for Respiratory Cycle Monitoring and Non-Contact Sensing Applications.

Adv Mater

January 2025

Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!