Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Humans can estimate the number of visually presented items without counting. In most studies on numerosity perception, items are uniformly distributed across displays, with identical distributions in central and eccentric parts. However, the neural and perceptual representation of the human visual field differs between the fovea and the periphery. For example, in peripheral vision, there are strong asymmetries with regard to perceptual interferences between visual items. In particular, items arranged radially usually interfere more strongly with each other than items arranged tangentially (the radial-tangential anisotropy). This has been shown for crowding (the deleterious effect of clutter on target identification) and redundancy masking (the reduction of the number of perceived items in repeating patterns). In the present study, we tested how the radial-tangential anisotropy of peripheral vision impacts numerosity perception. In four experiments, we presented displays with varying numbers of discs that were predominantly arranged radially or tangentially, forming strong and weak interference conditions, respectively. Participants were asked to report the number of discs. We found that radial displays were reported as less numerous than tangential displays for all radial and tangential manipulations: weak (Experiment 1), strong (Experiment 2), and when using displays with mixed contrast polarity discs (Experiments 3 and 4). We propose that numerosity perception exhibits a significant radial-tangential anisotropy, resulting from local spatial interactions between items.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271808 | PMC |
http://dx.doi.org/10.1167/jov.24.7.15 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!