A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Is Hooke's law applicable to an orthodontic cantilever? | LitMetric

Is Hooke's law applicable to an orthodontic cantilever?

Am J Orthod Dentofacial Orthop

Department of Orthodontics, School of Dentistry, Kyungpook National University, Dalgubeol-daero, Jung-gu, Daegu, South Korea. Electronic address:

Published: November 2024

Introduction: This study aimed to analyze the load-deflection characteristics of an orthodontic cantilever by using the large deflection elastic model.

Methods: We experimentally measured the vertical deflections of a cantilever with round or rectangular cross-sections, with lengths of 20 mm and 30 mm, and made of either stainless steel or titanium molybdenum alloy. The measurements were obtained under clinically relevant loading ranges (20-60 g of force for round and 20-140 g of force for rectangular wires) and compared with theoretical predictions derived from small and large deflection elastic models. Load-deflection and tangent stiffness curves were subsequently plotted.

Results: The impact of a permanent deformation was clinically insignificant. The stiffness of the cantilever increased with the load or deflection rather than remaining constant. Within the clinical loading range, we identified stiffness reversal loading values at which the stiffness of titanium molybdenum alloy surpassed that of stainless steel. The textbook guidelines on cantilevers can apply only when the vertical deflection remains within 16% of its length.

Conclusions: Within the typical clinical loading range, the load-deflection relationship of a cantilever deviates from Hooke's law because of the prominent deflection trait. The conventional model remains effective when the vertical deflection is within 16% of the cantilever length. Otherwise, it is advisable to determine the load and stiffness on the basis of actual measurements rather than relying on theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2024.06.018DOI Listing

Publication Analysis

Top Keywords

hooke's law
8
large deflection
8
deflection elastic
8
stainless steel
8
titanium molybdenum
8
molybdenum alloy
8
theoretical predictions
8
clinical loading
8
loading range
8
vertical deflection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!