We present a v-groove grating functioning as a polarizing beam splitter. The grating works in the off-plane or conical diffraction geometry. In order to guarantee polarization selectivity and efficiency, the v-groove is designed to split the incoming radiation with a single reflection at the Brewster angle of the grating coating. This geometry is conceptually the same as the one reported by Caretta et al. [Struct. Dyn. 8, 034304 (2021)], but it reduces the noise on the splitting ratio introduced by beam-shape variations or beam displacements. We calculate the groove size to simultaneously perform polarization and spectral analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0215241DOI Listing

Publication Analysis

Top Keywords

polarizing beam
8
beam splitter
8
splitter vacuum
4
vacuum ultraviolet
4
ultraviolet x-ray
4
x-ray radiation
4
radiation v-groove
4
v-groove grating
4
grating functioning
4
functioning polarizing
4

Similar Publications

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

Auto-collimation diffraction of two-dimensional metal-dielectric grating with azimuth angle of 45°.

Nanophotonics

January 2025

College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.

Grating under auto-collimation configuration with polarization-independent high diffraction efficiency plays an important role in the displacement measurement system, spectral beam combining system and so on. In this paper, we proposed, for the first time, a reflective two-dimensional metal-dielectric grating of which the (-1, -1) order beam is diffracted back along the input light direction, when the incident azimuth angle is 45°. With optimized structure, the (-1, -1) order diffraction efficiencies of transverse electric polarization (TE) and transverse magnetic polarization (TM) are 95.

View Article and Find Full Text PDF

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

A novel multi-molecular beam/infrared reflection absorption spectroscopy (IRAS) apparatus is described, which was constructed for studying mechanisms and kinetics of heterogeneously catalyzed reactions following a rigorous surface science approach in the pressure range from ultrahigh vacuum (UHV, 1 × 10-10 mbar) to near-ambient pressure (NAP, 1000 mbar) conditions. The apparatus comprises a preparation chamber equipped with standard surface science tools required for the preparation and characterization of model heterogeneous catalysts and two reaction chambers operating at different pressure ranges: in UHV and in the variable pressure range up to NAP conditions. The UHV reaction chamber contains two effusive molecular beams (flux up to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!