Clofazimine inhibits innate immunity against by NF-κB.

mSphere

Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China.

Published: August 2024

Unlabelled: Tuberculosis (TB) remains one of the infectious diseases with high incidence and high mortality. About a quarter of the population has been latently infected with . At present, the available TB treatment strategies have the disadvantages of too long treatment duration and serious adverse reactions. The sustained inflammatory response leads to permanent tissue damage. Unfortunately, the current selection of treatment regimens does not consider the immunomodulatory effects of various drugs. In this study, we preliminarily evaluated the effects of commonly used anti-tuberculosis drugs on innate immunity at the cellular level. The results showed that clofazimine (CFZ) has a significant innate immunosuppressive effect. CFZ significantly inhibited cytokines and type I interferons (IFNα and IFNβ) expression under both lipopolysaccharide stimulation and CFZ-resistant strain infection. In further mechanistic studies, CFZ strongly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65 and had no significant effect on the phosphorylation of p38. In conclusion, our study found that CFZ suppresses innate immunity against by NF-κB, which should be considered in future regimen development.

Importance: The complete elimination of (Mtb), the etiologic agent of TB, from TB patients is a complicated process that takes a long time. The excessive immune inflammatory response of the host for a long time causes irreversible organic damage to the lungs and liver. Current antibiotic-based treatment options involve multiple complex drug combinations, often targeting different physiological processes of Mtb. Given the high incidence of post-tuberculosis lung disease, we should also consider the immunomodulatory properties of other drugs when selecting drug combinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351037PMC
http://dx.doi.org/10.1128/msphere.00254-24DOI Listing

Publication Analysis

Top Keywords

innate immunity
12
immunity nf-κb
8
high incidence
8
inflammatory response
8
consider immunomodulatory
8
cfz inhibited
8
long time
8
drug combinations
8
clofazimine inhibits
4
innate
4

Similar Publications

α-Lipoic acid increases phagocytosis of some lactic acid bacteria via modulation of CD36 expression.

Biosci Microbiota Food Health

August 2024

Local Brand R&D, SSP Co., Ltd., Opera City Tower, 3-20-2 Nishi Shinjuku, Shinjuku-ku, Tokyo 163-1488, Japan.

Phagocytosis by immunocompetent cells is a key role in the biological defense mechanism and is the starting point of the reaction that leads from innate to acquired immunity. Several studies have demonstrated that some lactic acid bacteria strains activate the innate and acquired immune systems of the host. However, further investigation of the mechanism and improvement of usefulness is needed because the effect differs depending on the type and strain of lactic acid bacteria.

View Article and Find Full Text PDF

The stress-induced keratin intermediate filament gene/protein (K16) is spatially restricted to the suprabasal compartment of the epidermis and extensively used as a biomarker for psoriasis, hidradenitis suppurativa, atopic dermatitis and other inflammatory disorders. However, its role in these conditions remains poorly defined. Here we show that K16 negatively regulates type-I interferon (IFN) signaling and innate immune responses.

View Article and Find Full Text PDF

Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1.

View Article and Find Full Text PDF

Monoclonal antibodies enhance innate immunity, while bispecific T cell engager antibodies redirect adaptive T cell immunity. To stimulate both innate and adaptive mechanisms, we created a bifunctional eCD16A/anti-CD3-BFP adapter protein for combined use with clinically approved monoclonal IgG1 antibodies. The adaptor protein contains the extracellular domain of the human CD16A high-affinity variant, which binds the Fc domain of IgG1 antibodies, and an anti-human CD3 single-chain variable fragment that redirects T cell cytotoxicity.

View Article and Find Full Text PDF

A MACPF Protein OsCAD1 Balances Plant Growth and Immunity Through Regulating Salicylic Acid Homeostasis in Rice.

Plant Cell Environ

January 2025

State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, China.

Unraveling the mechanisms behind plant growth and immunity contributes to effective crop improvement. Membrane attack complex/perforin (MACPF) domain proteins play vital roles in innate and adaptive immunity in vertebrates; however, their molecular functions in plants remain largely unexplored. Here, we isolated and characterized a rice mutant, Oryza sativa constitutively activated cell death 1 (oscad1), which exhibited a lesion mimic phenotype and growth inhibition with increased cell death, elevated ROS accumulation, and enhanced resistance to bacterial blight Xanthomonas oryzae pv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!