Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors.

Biosci Rep

Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, Republic of South Africa.

Published: August 2024

Human somatic angiotensin-converting enzyme (ACE) is a key zinc metallopeptidase that plays a pivotal role in the renin-angiotensin-aldosterone system (RAAS) by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided invaluable insights into the molecular mechanisms underlying ACE inhibition, facilitating the design and development of more effective therapeutic agents. This review focuses on the latest advancements in elucidating the structural basis for ACE inhibition. High-resolution crystallographic studies of minimally glycosylated individual domains of ACE have revealed intricate molecular details of the ACE catalytic N- and C-domains, and their detailed interactions with clinically relevant and newly designed domain-specific inhibitors. In addition, the recently elucidated structure of the glycosylated form of full-length ACE by cryo-electron microscopy (cryo-EM) has shed light on the mechanism of ACE dimerization and revealed continuous conformational changes which occur prior to ligand binding. In addition to these experimental techniques, computational approaches have also played a pivotal role in elucidating the structural basis for ACE inhibition. Molecular dynamics simulations and computational docking studies have provided atomic details of inhibitor binding kinetics and energetics, facilitating the rational design of novel ACE inhibitors with improved potency and selectivity. Furthermore, computational analysis of the motions observed by cryo-EM allowed the identification of allosteric binding sites on ACE. This affords new opportunities for the development of next-generation allosteric inhibitors with enhanced pharmacological properties. Overall, the insights highlighted in this review could enable the rational design of novel ACE inhibitors with improved efficacy and safety profiles, ultimately leading to better therapeutic outcomes for patients with hypertension and cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300679PMC
http://dx.doi.org/10.1042/BSR20240130DOI Listing

Publication Analysis

Top Keywords

ace
13
structural basis
12
ace inhibitors
12
ace inhibition
12
advances structural
8
enzyme ace
8
pivotal role
8
hypertension cardiovascular
8
cardiovascular diseases
8
elucidating structural
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!