N6-methyladenosine (m6A) methylation is a vital epigenetic mechanism associated with drug addiction. However, the relationship between m6A modification and oxycodone rewarding is less well explored. Based on an open field test, the present study evaluated oxycodone rewarding using chromatin immunoprecipitation PCR, immunofluorescence, and RNA sequencing. A marked increase in METTL14 protein and a decrease in PP1α protein due to oxycodone abundance in the striatal neurons were observed in a dose- and time-dependent manner. Oxycodone markedly increased LSD1 expression, and decreased H3K4me1 expression in the striatum. In the open field test, intra-striatal injection of METTL14 siRNA, HOTAIR siRNA, or LSD1 shRNA blocked oxycodone-induced increase in locomotor activity. The downregulation of PP1α was also inhibited after treatment with METTL14/HOTAIR siRNA and LSD1 shRNA. Enhanced binding of LSD1 with CoRest and of CoRest with the PP1α gene induced by oxycodone was also reversed by LSD1 shRNA. In addition, H3K4me1 demethylation was also blocked by the treatment. In summary, the investigation confirmed that METTL14-mediated upregulation of HOTAIR resulted in the repression of PP1α, which in turn facilitated the recruitment of LSD1, thus catalyzing H3K4me1 demethylation and promoting oxycodone addiction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267563 | PMC |
http://dx.doi.org/10.1111/cns.14830 | DOI Listing |
Mol Divers
November 2024
Center for Computational Biology & Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai, MH, India.
The tumor microenvironment and immune evasion function in a complex cellular network profoundly challenge the clinical outcome of promising therapies. Our recently published study reported that the subset of genes upregulated in ccRCC due to H3K4me1 and DNA demethylation potentially leads to an immunosuppressive environment. Thus, modulating H3K4me1 chromatin modifier SETD7 with a natural inhibitor in combination with immunotherapy might improve the immune landscape for a better therapeutic outcome.
View Article and Find Full Text PDFCardiovasc Toxicol
November 2024
College of Basic Medical Sciences, Tianjin Medical University, 22# Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
Histone demethylation in cardiac hypertrophy is poorly understood. This study aims to determine the role of the histone demethylase LSD1 in pathological cardiac hypertrophy. Both isoprenaline (ISO)-treated and transverse aortic constriction (TAC)-treated rats developed hypertrophic hearts.
View Article and Find Full Text PDFNat Commun
September 2024
Department of Molecular Biology, Umeå University, Umeå, Sweden.
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation.
View Article and Find Full Text PDFCNS Neurosci Ther
July 2024
Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China.
N6-methyladenosine (m6A) methylation is a vital epigenetic mechanism associated with drug addiction. However, the relationship between m6A modification and oxycodone rewarding is less well explored. Based on an open field test, the present study evaluated oxycodone rewarding using chromatin immunoprecipitation PCR, immunofluorescence, and RNA sequencing.
View Article and Find Full Text PDFSci Adv
June 2024
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Histone H3 lysine-9 methylation (H3K9me) is a hallmark of the condensed and transcriptionally silent heterochromatin. It remains unclear how H3K9me controls transcription silencing and how cells delimit H3K9me domains to avoid silencing essential genes. Here, using genetic systems that induce H3K9me2 in genes and transposons de novo, we show that H3K9me2 accumulation paradoxically also causes the deposition of the euchromatic mark H3K36me3 by a SET domain methyltransferase, ASHH3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!