Resorbed alveolar ridges, particularly in the lower jaw, have a small denture supporting area, which may cause the stress distribution of mastication load to exceed the pressure-pain threshold (PPT) and induce pain in the mucosa or potentially worsen the ridge resorption. Thus, choosing the ideal occlusal scheme among bilateral balanced (BBO), lingualized (LO), and monoplane (MO) for such conditions becomes crucial. The experiment was conducted using the finite element method on a modeling of a resorbed alveolar ridge in the lower jaw with three dentures placed on top, each of which was given different loading points according to the tooth arrangement of BBO, LO, and MO. The axial load was 100 N, and the resultant oblique loads on BBO and LO were 119 N and 106 N, respectively. The von Mises stresses for BBO, LO, and MO were observed in nine denture-supporting areas, and the results showed that the axial load did not produce stresses that exceeded the PPT value (0.64925 MPa) for BBO, LO, and MO with the highest value on area H, 0.43229 MPa, 0.39715 MPa, and 0.31576 MPa, respectively. However, the oblique load direction showed that the BBO had more areas (area E 0.80778 MPa and area H 0.76256 MPa) that exceeded the PPT than LO (area E 0.64394 MPa). The lingualized occlusal scheme is ideal for patients with resorbed alveolar ridge conditions, especially in terms of limiting interferences when the denture is functioning while maintaining comfort but still providing good masticatory performance and satisfactory esthetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262769PMC
http://dx.doi.org/10.1590/0103-6440202405798DOI Listing

Publication Analysis

Top Keywords

resorbed alveolar
12
finite element
8
element method
8
lower jaw
8
occlusal scheme
8
alveolar ridge
8
axial load
8
exceeded ppt
8
mpa
7
bbo
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!