A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large Local Internal Stress in an Elastically Bent Molecular Crystal Revealed by Raman Shifts. | LitMetric

AI Article Synopsis

  • The study investigates the structural dynamics and internal stress in a flexible lipidated molecular crystal, revealing complex vibrational frequency shifts during bending.
  • These shifts, identified through micro-Raman mapping, challenge existing bending models based on intermolecular hydrogen bonds, as they show unexpected behaviors in inner and outer bent regions.
  • The findings indicate a significant local stress difference of about 2 GPa, which drastically impacts the performance of molecular devices like piezoelectric harvesters and flexible electronics.

Article Abstract

The structural dynamics involved in the mechanical flexibility of molecular crystals and the internal stress in such flexible materials remain obscure. Here, the study reports an elastically bending lipidated molecular crystal that shows systematic shifts in characteristic vibrational frequencies across the bent crystal region - revealing the nature of structural changes during bending and the local internal stress distribution. The blueshifts in the bond stretching modes (such as C═O and C-H modes) in the inner arc region and redshifts in the outer arc region of the bent crystals observed via micro-Raman mapping are counterintuitive to the bending models based on intermolecular hydrogen bonds. Correlating these shifts with the trends observed from high-pressure Raman studies on the crystal reveals the local stress difference between the inner arc and outer arc regions of the bent crystal to be ≈2 GPa, more than an order of magnitude higher than the previously proposed value in elastically bending crystals. High local internal stress can have direct ramifications on the properties of molecular piezoelectric energy harvesters, actuators, semiconductors, and flexible optoelectronic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402120DOI Listing

Publication Analysis

Top Keywords

internal stress
16
local internal
12
molecular crystal
8
elastically bending
8
bent crystal
8
inner arc
8
arc region
8
outer arc
8
stress
5
crystal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!