PAMAM dendrimers as mediators of dermal and transdermal drug delivery: a review.

J Pharm Pharmacol

The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

Published: October 2024

Objectives: Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed.

Key Findings: A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases.

Summary: Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpp/rgae080DOI Listing

Publication Analysis

Top Keywords

skin permeation
12
drug delivery
8
topically applied
8
enhancement skin
8
studies conducted
8
dendrimers
6
skin
6
studies
5
pamam dendrimers
4
dendrimers mediators
4

Similar Publications

Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.

View Article and Find Full Text PDF

Blended ƙ-carrageenan and xanthan gum hydrogel containing ketoprofen-loaded nanoemulsions: Design, characterization, and evaluation in an animal model of rheumatoid arthritis.

Drug Deliv Transl Res

January 2025

Departamento de Farmácia Industrial, Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação Em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.

This study reports the preparation of hydrogels (HG) made with xanthan gum (XG) and ƙ-carrageenan (KC) polysaccharides containing ketoprofen (KET)-loaded nanoemulsions (NK) and their evaluation in a rheumatoid arthritis (RA) model. The nano-based HGs exhibited nanometric-sized droplets (~ 100 nm), an acidic pH (5.10-6.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations.

View Article and Find Full Text PDF

Lipophilic derivatives of vitamin C, known as ascorbyl-6-O-alkanoates (ASCn), have been mainly developed for use in cosmetics, pharmaceuticals, and the food industry as antioxidant additives. These derivatives are of biotechnological interest due to their antioxidant properties, amphiphilic behavior, capacity to self-organize into nano- and micro-structures, anionic nature, and low cost of synthesis. In this review, we will focus on the commercial amphiphile, 6-O-palmitoyl L-ascorbic acid (ASC16), and the shorter acyl chains derivatives, such as 6-O-myristoyl (ASC14) and 6-O-lauroyl L-ascorbic acid (ASC12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!