AI Article Synopsis

  • Low-field nuclear magnetic resonance (NMR) is a cool method that helps scientists study how liquids interact with solids in porous materials without opening them up.
  • Researchers tested 10 different liquids, like water and alcohols, in tiny holes of a material to see how fast the liquid molecules relax, which means how quickly they can change state.
  • They found out that different parts of the alcohol molecules behave differently depending on the material they're in, and they noticed important connections between the structure of the liquids and how they relax at the surfaces.

Article Abstract

Low-field nuclear magnetic resonance (NMR) relaxation is a promising non-invasive technique for characterizing solid-liquid interactions within functional porous materials. However, the ability of the solid-liquid interface to enhance adsorbate relaxation rates, known as the surface relaxivity, in the case of different solvents and reagents involved in various chemical processes has yet to be evaluated in a quantitative manner. In this study, we systematically explore the surface relaxation characteristics of 10 liquid adsorbates (cyclohexane, acetone, water, and 7 alcohols, including ethylene glycol) confined within mesoporous silicas with pore sizes between 6 and 50 nm using low-field (12.7 MHz) two-dimensional H - relaxation measurements. Functional-group-specific relaxation phenomena associated with the alkyl and hydroxyl groups of the confined alcohols are clearly distinguished; we report the dependence of both longitudinal () and transverse () relaxation rates of these H-bearing moieties on pore surface-to-volume ratio, facilitating the quantification and assignment of surface relaxivity values to specific functional groups within the same adsorbate molecule for the first time. We further demonstrate that alkyl group transverse surface relaxivities correlate strongly with the alkyl/hydroxyl ratio of the adsorbates assessed, providing evidence for a simple, quantitative relationship between surface relaxivity and interfacial chemistry. Overall, our observations highlight potential pitfalls in the application of NMR relaxation for the evaluation of pore size distributions using hydroxylated probe molecules, and provide motivation for the exploration of nuclear spin relaxation measurements as a route to adsorbate identity within functional porous materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01245DOI Listing

Publication Analysis

Top Keywords

surface relaxivity
16
nuclear spin
8
relaxation
8
nmr relaxation
8
functional porous
8
porous materials
8
relaxation rates
8
relaxation measurements
8
surface
6
quantifying chemical
4

Similar Publications

An ASGP-R-targeting magnetic resonance imaging contrast agent for liver cancer diagnosis.

J Mater Chem B

January 2025

Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

Development of novel Gd-based contrast agents for targeted magnetic resonance imaging (MRI) of liver cancer remains a great challenge. Herein we reported a novel Gd-based MRI contrast agent with improved relaxivity for specifically diagnosing liver cancer. This GSH-responsive macromolecular contrast agent (mCA), POLDGd, was prepared by RAFT polymerization, and its lactic acid moiety could precisely target the ASGP-R surface protein on liver cancer cells, whereas PODGd without the lactic acid moiety was prepared as a control.

View Article and Find Full Text PDF

Weakening Coulomb interactions in ionic liquid via hydrogen bonds enables ultrafast supercapacitors.

J Colloid Interface Sci

January 2025

Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:

The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.

View Article and Find Full Text PDF

Population genomics of premature termination codons in cavefish with substantial trait loss.

Mol Biol Evol

January 2025

Ecology, Evolution, and Behavior, 140 Gortner Lab, 1479 Gortner Ave, University of Minnesota, Saint Paul, MN 55108, USA.

Loss-of-function alleles are a pertinent source of genetic variation with the potential to contribute to adaptation. Cave-adapted organisms exhibit striking loss of ancestral traits such as eyes and pigment, suggesting that loss-of-function alleles may play an outsized role in these systems. Here, we leverage 141 whole genome sequences to evaluate the evolutionary history and adaptive potential of single nucleotide premature termination codons (PTCs) in Mexican tetra.

View Article and Find Full Text PDF

In the present study, with oregano essential oil (OEO) as the active ingredient and polyvinyl alcohol/citric acid (PVA/CA) as the composite matrix, ultraviolet (UV) responded PVA bio-active films incorporated with microcapsules, which were established by chitosan-incorporated titanium dioxide (TiO), were constructed. The UV light-triggered process changed the structure of films, including the degradation of PVA, the fracture of ester bonds and the breaking of glycosidic bonds. UV irradiation reduced the elongation at break, increased the light resistance ability, the surface hydrophobicity and the roughness, and accelerated the release of OEO in films.

View Article and Find Full Text PDF

Design and fabrication of 1D nanomaterials for electromagnetic wave absorption.

Natl Sci Rev

February 2025

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China.

The design and fabrication of high-performance electromagnetic wave (EMW) absorbing materials are essential in developing electronic communication technology for defense and civilian applications. These materials function by interacting with EMWs, creating various effects such as polarization relaxation, magnetic resonance, and magnetic hysteresis in order to absorb EMWs. Significant progress has been made to improve the dimensional performance of such materials, emphasizing the 'thin, light, broad, and strong' functional specifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!