Local adaptation, recombination, and the fate of neopolyploids.

New Phytol

Department of Biology, University of Florida, Gainesville, FL, 32611, USA.

Published: October 2024

Polyploidy is widely recognized as an important speciation mechanism because it isolates tetraploids from their diploid progenitors. Polyploidy also provides new genetic material that may facilitate adaptive evolution. However, new mutations are more likely to arise after a neopolyploid has already successfully invaded a population. Thus, the role of adaptive forces in establishing a polyploid remains unclear. One solution to this apparent paradox may lie in the capacity of polyploids to suppress recombination among preexisting locally adapted alleles. The local adaptation mechanism requires that spatially heterogeneous selection acts on multiple loci and that gene flow introduces maladapted alleles to the population where the polyploid forms. The mechanism requires neither strong genetic drift nor any intrinsic benefit of genome doubling and can accommodate any mode of gene action. A unique prediction of the mechanism is that adaptive alleles should predate polyploidization, a pattern consistent with observations from a few well-studied polyploids. The mechanism is also consistent with the coexistence of both diploid and tetraploid cytotypes, fitness heterogeneity among independently derived polyploids, and the prevalence of outcrossing among older polyploids. The local adaptation mechanism also makes novel predictions about circumstances favoring polyploid invasions that can be tested using molecular genetic or comparative approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.20011DOI Listing

Publication Analysis

Top Keywords

local adaptation
12
adaptation mechanism
8
mechanism requires
8
mechanism
6
adaptation recombination
4
recombination fate
4
fate neopolyploids
4
neopolyploids polyploidy
4
polyploidy recognized
4
recognized speciation
4

Similar Publications

CT-guided adaptive radiotherapy (ART) for the treatment of pancreatic adenocarcinoma is rapidly increasing and has been shown to provide advanced treatment tools comparable to magnetic resonance imaging (MRI)-guided adaptive therapy. Here, we provide the first case report of a local pancreatic recurrence treatment after definitive resection using cone beam computed tomography (CBCT)-guided ART (CT-guided ART) enabled by HyperSight imaging (Varian Medical Systems, Inc., Palo Alto, CA, USA) for daily delineation of organs-at-risk (OARs) and target to improve the quality of online ART.

View Article and Find Full Text PDF

The advent of single-cell RNA sequencing (scRNA-seq) has greatly enhanced our ability to explore cellular heterogeneity with high resolution. Identifying subpopulations of cells and their associated molecular markers is crucial in understanding their distinct roles in tissues. To address the challenges in marker gene selection, we introduce CORTADO, a computational framework based on hill-climbing optimization for the efficient discovery of cell-type-specific markers.

View Article and Find Full Text PDF

Despite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression.

View Article and Find Full Text PDF

Circadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!