SCAG: A Stratified, Clustered, and Growing-Based Algorithm for Soybean Branch Angle Extraction and Ideal Plant Architecture Evaluation.

Plant Phenomics

Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Centre for Modern Crop Production cosponsored by Province and Ministry, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.

Published: July 2024

Three-dimensional (3D) phenotyping is important for studying plant structure and function. Light detection and ranging (LiDAR) has gained prominence in 3D plant phenotyping due to its ability to collect 3D point clouds. However, organ-level branch detection remains challenging due to small targets, sparse points, and low signal-to-noise ratios. In addition, extracting biologically relevant angle traits is difficult. In this study, we developed a stratified, clustered, and growing-based algorithm (SCAG) for soybean branch detection and branch angle calculation from LiDAR data, which is heuristic, open-source, and expandable. SCAG achieved high branch detection accuracy ( = 0.77) and branch angle calculation accuracy ( = 0.84) when evaluated on 152 diverse soybean varieties. Meanwhile, the SCAG outperformed 2 other classic algorithms, the support vector machine ( = 0.53) and density-based methods ( = 0.55). Moreover, after applying the SCAG to 405 soybean varieties over 2 consecutive years, we quantified various 3D traits, including canopy width, height, stem length, and average angle. After data filtering, we identified novel heritable and repeatable traits for evaluating soybean density tolerance potential, such as the ratio of average angle to height and the ratio of average angle to stem length, which showed greater potential than the well-known ratio of canopy width to height trait. Our work demonstrates remarkable advances in 3D phenotyping and plant architecture screening. The algorithm can be applied to other crops, such as maize and tomato. Our dataset, scripts, and software are public, which can further benefit the plant science community by enhancing plant architecture characterization and ideal variety selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265809PMC
http://dx.doi.org/10.34133/plantphenomics.0190DOI Listing

Publication Analysis

Top Keywords

branch angle
12
plant architecture
12
branch detection
12
average angle
12
stratified clustered
8
clustered growing-based
8
growing-based algorithm
8
soybean branch
8
angle calculation
8
soybean varieties
8

Similar Publications

Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4.

View Article and Find Full Text PDF

Total knee arthroplasty (TKA) is commonly performed for severe osteoarthritis but often results in significant postoperative swelling and discomfort, impacting early rehabilitation. Photobiomodulation therapy (PBMT), utilizing low-level laser therapy (LLLT), has emerged as a potential adjunctive treatment to alleviate these symptoms. In this single-center, nonblinded prospective randomized clinical trial, conducted from May to July 2024, 30 patients undergoing primary TKA were enrolled and divided into two groups.

View Article and Find Full Text PDF

The potential role of SCF combined with DPCs in facial nerve repair.

J Mol Histol

January 2025

School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150000, China.

Facial nerve injuries lead to significant functional impairments and psychological distress for affected patients. Effective repair of these injuries remains a challenge. For longer nerve gaps, the regeneration outcomes after nerve grafting remain suboptimal due to limited sources and postoperative immune responses.

View Article and Find Full Text PDF

Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures.

Nano Lett

January 2025

Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.

The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.

View Article and Find Full Text PDF

In laser safety eyewear, due to the lack of complete blocking of ultraviolet and infrared rays, we proposed a structure based on one-dimensional multilayer composed of several layers of silicon dioxide and zirconium dioxide materials alternately behind polycarbonate lens. It is find out that the acceptance angle range to the photonic crystal is 0 to 39°. This incident angle range corresponds to the band gap of the photonic crystal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!