A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic effect of ultrasound and reinforced electrical environment by bioinspired periosteum for enhanced osteogenesis via immunomodulation of macrophage polarization through Piezo1. | LitMetric

Synergistic effect of ultrasound and reinforced electrical environment by bioinspired periosteum for enhanced osteogenesis via immunomodulation of macrophage polarization through Piezo1.

Mater Today Bio

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.

Published: August 2024

The periosteum plays a vital role in repairing bone defects. Researchers have demonstrated the existence of electrical potential in the periosteum and native bone, indicating that electrical signals are essential for functional bone regeneration. However, the clinical use of external electrical treatments has been limited due to their inconvenience and inefficacy. As an alternative, low-intensity pulsed ultrasound (LIPUS) is a noninvasive form of physical therapy that enhances bone regeneration. Furthermore, the wireless activation of piezoelectric biomaterials through ultrasound stimulation would generate electric charges precisely at the defect area, compensating for the insufficiency of external electrical stimulation and potentially promoting bone regeneration through the synergistic effect of mechanical and electrical stimulation. However, the optimal integration of LIPUS with an appropriate piezoelectric periosteum is yet to be explored. Herein, the BaTiO/multiwalled-carbon nanotubes/collagen (BMC) membranes have been fabricated, possessing physicochemical properties including improved surface hydrophilicity, enhanced mechanical performance, ideal piezoelectricity, and outstanding biocompatibility, all of which are conducive to bone regeneration. When combined with LIPUS, the endogenous electrical microenvironment of native bone was recreated. After that, the wireless-generated electrical signals, along with the mechanical signals induced by LIPUS, were transferred to macrophages and activated Ca influx through Piezo1. Ultimately, the regenerative effect of the BMC membrane with LIPUS stimulation (BMC + L) was confirmed in a mouse cranial defect model. Together, this research presents a co-engineering strategy that involves fabricating a novel biomimetic periosteum and utilizing the synergistic effect of ultrasound to enhance bone regeneration, which is achieved through the reinforcement of the electrical environment and the immunomodulation of macrophage polarization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263955PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101147DOI Listing

Publication Analysis

Top Keywords

bone regeneration
20
electrical
9
synergistic ultrasound
8
electrical environment
8
immunomodulation macrophage
8
macrophage polarization
8
bone
8
native bone
8
electrical signals
8
external electrical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!