Significance: Single-chip imaging devices featuring vertically stacked photodiodes and pixelated spectral filters are advancing multi-dye imaging methods for cancer surgeries, though this innovation comes with a compromise in spatial resolution. To mitigate this drawback, we developed a deep convolutional neural network (CNN) aimed at demosaicing the color and near-infrared (NIR) channels, with its performance validated on both pre-clinical and clinical datasets.

Aim: We introduce an optimized deep CNN designed for demosaicing both color and NIR images obtained using a hexachromatic imaging sensor.

Approach: A residual CNN was fine-tuned and trained on a dataset of color images and subsequently assessed on a series of dual-channel, color, and NIR images to demonstrate its enhanced performance compared with traditional bilinear interpolation.

Results: Our optimized CNN for demosaicing color and NIR images achieves a reduction in the mean square error by 37% for color and 40% for NIR, respectively, and enhances the structural dissimilarity index by 37% across both imaging modalities in pre-clinical data. In clinical datasets, the network improves the mean square error by 35% in color images and 42% in NIR images while enhancing the structural dissimilarity index by 39% in both imaging modalities.

Conclusions: We showcase enhancements in image resolution for both color and NIR modalities through the use of an optimized CNN tailored for a hexachromatic image sensor. With the ongoing advancements in graphics card computational power, our approach delivers significant improvements in resolution that are feasible for real-time execution in surgical environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265532PMC
http://dx.doi.org/10.1117/1.JBO.29.7.076005DOI Listing

Publication Analysis

Top Keywords

color nir
16
nir images
16
demosaicing color
12
convolutional neural
8
neural network
8
color
8
color images
8
optimized cnn
8
square error
8
structural dissimilarity
8

Similar Publications

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Genetic variation for malting quality as well as metabolomic and near-infrared features was identified. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy of predicted breeding values. Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectroscopy technologies for enhancing genetic evaluation in breeding programs.

View Article and Find Full Text PDF

Introduction: Crocin-I, a water-soluble carotenoid pigment, is an important coloring constituent in gardenia fruit. It has wide application in various industries such as food, medicine, chemical industry, and so on. So the content of crocin-I plays a key role in evaluating the quality of gardenia.

View Article and Find Full Text PDF

Purpose: Assessment of tissue perfusion using near-infrared fluorescence (NIR) with indocyanine green (ICG) is gaining popularity, however reliable and objective interpretation remains a challenge. Therefore, this study aimed to establish reference curves for vital tissue perfusion across target tissues using this imaging modality.

Methods: Data from five prospective study cohorts conducted in three Dutch academic medical centres between December 2018 and June 2023 was included.

View Article and Find Full Text PDF

Following the industrial revolution and the modernization of chemistry, purple became one of the most popular colors in the palettes of late 19th- to 20th-century painters. Among them, Robert Delaunay (1885-1941) was one of the key artists of the avant-garde movement in France in the early 20th century. Although widely used in modern and contemporary paintings, inorganic purple pigments of the cobalt phosphate and cobalt arsenate families have been little studied chemically until now.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!