Aims: Apical foreshortening leads to an underestimation of left ventricular (LV) volumes and an overestimation of LV ejection fraction and global longitudinal strain. Real-time guiding using deep learning (DL) during echocardiography to reduce foreshortening could improve standardization and reduce variability. We aimed to study the effect of real-time DL guiding during echocardiography on measures of LV foreshortening and inter-observer variability.

Methods And Results: Patients ( = 88) in sinus rhythm referred for echocardiography without indication for contrast were included. All participants underwent three echocardiograms. The first two examinations were performed by sonographers, and the third by cardiologists. In Period 1, the sonographers were instructed to provide high-quality echocardiograms. In Period 2, the DL guiding was used by the second sonographer. One blinded expert measured LV length in all recordings. Tri-plane recordings by cardiologists were used as reference. Apical foreshortening was calculated at the end-diastole. Both sonographer groups significantly foreshortened the LV in Period 1 (mean foreshortening: Sonographer 1: 4 mm; Sonographer 2: 3 mm, both < 0.001 vs. reference) and reduced foreshortening in Period 2 (2 and 0 mm, respectively. Period 1 vs. Period 2, < 0.05). Sonographers using DL guiding did not foreshorten more than cardiologists ( ≥ 0.409). Real-time guiding did not improve intra-class correlation (ICC) [LV end-diastolic volume ICC, (95% confidence interval): DL guiding 0.87 (0.77-0.93) vs. no guiding 0.92 (0.88-0.95)].

Conclusion: Real-time guiding reduced foreshortening among experienced operators and has the potential to improve image standardization. Even though the effect on inter-operator variability was minimal among experienced users, real-time guiding may improve test-retest variability among less experienced users.

Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT04580095.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195768PMC
http://dx.doi.org/10.1093/ehjimp/qyad012DOI Listing

Publication Analysis

Top Keywords

real-time guiding
24
guiding
9
guiding deep
8
deep learning
8
learning echocardiography
8
echocardiography reduce
8
left ventricular
8
foreshortening
8
apical foreshortening
8
reduced foreshortening
8

Similar Publications

The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.

View Article and Find Full Text PDF

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

Fracture surgeries are frequently accompanied by severe pain, necessitating efficacious pain management strategies to enhance postoperative recovery. Nerve block techniques, which are critical in mitigating pain, involve the targeted administration of local anesthetics to disrupt nerve signal transmission, thereby achieving significant analgesia. Traditionally, these techniques rely on anatomical landmarks and the clinician's expertise, which can introduce variability and potential risks.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

Progressive Approaches in Oncological Diagnosis and Surveillance: Real-Time Impedance-Based Techniques and Advanced Algorithms.

Bioelectromagnetics

January 2025

Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.

Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!