In recent years, virological, pathological, and immunological studies need to be carried out for the emerging anti-human immunodeficiency virus (HIV) therapies such as gene therapy, broadly neutralizing antibodies, and the derived chimeric antigen receptor (CAR)-T immunotherapy, which necessitates suitable, simple, and inexpensive small-animal models and methods for accurate quantification of the viral genome in the HIV-1 infected. In our research, the HIV-∆ENV-Jurkat-EGFP-mCherry cell line was engineered through the infection with a dual-labelled HIV pseudovirus. A nested quantitative PCR (nested-qPCR) method with the cellular genome as the integrated standard was established for the quantification of HIV proviral copies. We administered intravenous injections of healthy human peripheral blood mononuclear cell (PBMC) into NOD/Prkdcscid/IL2rgnull (NPG) mice. To verify engraftment kinetics, we analyzed the percentages of hCD45+, hCD3+, hCD4+, and hCD8+ cells in the peripheral blood of hu-PBMC-NPG mice. To evaluate HIV-1 infection in hu-PBMC-NPG mice, we inoculated these mice with HIV NL4-3-NanoLuc by intraperitoneal (IP) injection. We then monitored the luciferase expression by the small animal imaging system and measured the viral load in the spleen by qPCR. The infiltration of human PBMCs in mice was detected 3-5 weeks after intravenous injection, and the percentage of hCD45 in humanized mouse PBMCs were more than 25% five weeks after IP inoculation. The expression of the virus-associated luciferase protein was detected by luciferase imaging 27 days post infection. Moreover, the viral total DNA, RNA, and proviral DNA copies reached 18 000 copies/10 cells, 15 000 copies/μg RNA, and 15 000 copies/10 cells, respectively, in the mouse spleen. Taken together, we reported a convenient method for building a simple humanized mouse model of HuPBMC-NPG/severe combined immunodeficiency (SCID) by intravenous injection with hu-PBMCs without advanced surgical skills and irradiation. Furthermore, we established a convenient method for the efficient determination of proviral DNA to assess HIV replication , viral reservoir sizes, and efficacy of novel anti-HIV therapies including CAR-T immunotherapy and gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.230859DOI Listing

Publication Analysis

Top Keywords

humanized mouse
12
proviral dna
12
mouse model
8
hiv-1 infection
8
hiv proviral
8
gene therapy
8
car-t immunotherapy
8
peripheral blood
8
hu-pbmc-npg mice
8
intravenous injection
8

Similar Publications

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Oncolytic viruses expressing MATEs facilitate target-independent T-cell activation in tumors.

EMBO Mol Med

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.

Oncolytic viruses (OV) expressing bispecific T-cell engagers (BiTEs) are promising tools for tumor immunotherapy but the range of target tumors is limited. To facilitate effective T-cell stimulation with broad-range applicability, we established membrane-associated T-cell engagers (MATEs) harboring the protein transduction domain of the HIV-Tat protein to achieve non-selective binding to target cells. In vitro, MATEs effectively activated murine T cells and improved killing of MC38 colon carcinoma cells.

View Article and Find Full Text PDF

Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).

View Article and Find Full Text PDF

Background: Frequently utilized Alzheimer’s disease (AD) preclinical models rely on risk factors expressed in familial AD, which accounts for <1% of the clinical AD population. Apolipoprotein (APOE) ε4 is the strongest genetic risk factor for the development of the more prevalent late‐onset Alzheimer’s disease (LOAD). MRI studies demonstrate a link between APOE‐ε4 and reduced gray matter volume as well as lower fractional anisotropy (FA) in AD patients.

View Article and Find Full Text PDF

Background: Alzheimer’s affects women 2:1 compared to men, suggesting sex‐specific factors driving risk. Menopause, a female‐specific phenomenon, induces a multi‐system response across endocrine, metabolic, and immune‐inflammatory systems. Despite known effects on these systems, the impact on the brain and AD risk remains incompletely understood, limiting preventative options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!