A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ProteinFlow: An advanced framework for feature engineering in protein data analysis. | LitMetric

ProteinFlow: An advanced framework for feature engineering in protein data analysis.

Biotechnol Bioeng

School of Computer Science and Information Technology, University College Cork, Cork, Ireland.

Published: November 2024

In the burgeoning field of proteins, the effective analysis of intricate protein data remains a formidable challenge, necessitating advanced computational tools for data processing, feature extraction, and interpretation. This study introduces ProteinFlow, an innovative framework designed to revolutionize feature engineering in protein data analysis. ProteinFlow stands out by offering enhanced efficiency in data collection and preprocessing, along with advanced capabilities in feature extraction, directly addressing the complexities inherent in multidimensional protein data sets. Through a comparative analysis, ProteinFlow demonstrated a significant improvement over traditional methods, notably reducing data preprocessing time and expanding the scope of biologically significant features identified. The framework's parallel data processing strategy and advanced algorithms ensure not only rapid data handling but also the extraction of comprehensive, meaningful insights from protein sequences, structures, and interactions. Furthermore, ProteinFlow exhibits remarkable scalability, adeptly managing large-scale data sets without compromising performance, a crucial attribute in the era of big data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28812DOI Listing

Publication Analysis

Top Keywords

protein data
16
data
11
feature engineering
8
engineering protein
8
data analysis
8
data processing
8
feature extraction
8
analysis proteinflow
8
data sets
8
proteinflow
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!