Droplet electrophoresis (EP) is of interest in biological systems, microfluidics, and separation techniques. We investigate EP of an oil droplet that contains free ions and is stabilized in an electrolyte solution through an amphoteric surfactant. The presence of mobile ions within the droplet leads to the creation of a distinct nonzero space charge density inside the droplet and consequently, formation of an inner EDL inside the droplet in addition to the traditionally considered outside EDL. While we assume the permittivity inside the inner EDL to remain constant, we consider both the case of constant and variable permittivity in the outer EDL. Our findings demonstrate a change in the droplet direction of motion in the electric field when transitioning from acidic to alkaline pH, regardless of permittivity and ionic strength in both oil and electrolyte. We further find a significant reduction in the magnitude of droplet velocity in the case of a variable permittivity due to reduction of the local space charge density within the EDL surrounding the droplet. When decreasing the viscosity ratio of the oil to the electrolyte, in all cases we find a reduction in droplet velocity. This decline is attributed mostly to the formation and strength of a vortex around the droplet. We finally demonstrate that with constant permittivity in the outer EDL, the variation in has a more significant effect on the droplet's EP velocity than altering . However, in cases where the body forces inside of the droplet dominate, minor changes in the outer electrolyte concentration have no influence on the droplet motion, which is relevant for biological colloids that can contain significant free internal charges. Our results are important for the manipulation of biological colloids, water and waste treatment such as lubricant removal from processing streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c01080 | DOI Listing |
APMIS
January 2025
Department of Laboratory Medicine, Clinical Microbiology Örebro University Hospital and Faculty of Medicine and Health at Örebro University, Örebro, Sweden.
Shotgun metagenomics offers a broad detection of pathogens for rapid blood stream infection of pathogens but struggles with often low numbers of pathogens combined with high levels of human background DNA in clinical samples. This study aimed to develop a shotgun metagenomics protocol using blood spiked with various bacteria and to assess bacterial DNA extraction efficiency with human DNA depletion. The Blood Pathogen Kit (Molzym) was used to extract DNA from EDTA-whole blood (WB) and plasma samples, using contrived blood specimens spiked with bacteria for shotgun metagenomics diagnostics via Oxford Nanopore sequencing and PCR-based library preparation.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.
Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.
Adv Mater
January 2025
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
Background: Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!