A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluorinated Naphthalene Diimides as Buried Electron Transport Materials Achieve Over 23% Efficient Perovskite Solar Cells. | LitMetric

Fluorinated Naphthalene Diimides as Buried Electron Transport Materials Achieve Over 23% Efficient Perovskite Solar Cells.

Adv Sci (Weinh)

College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, 361005, China.

Published: September 2024

Naphthalene diimides (NDI) are widely serving as the skeleton to construct electron transport materials (ETMs) for optoelectronic devices. However, most of the reported NDI-based ETMs suffer from poor interfaces with the perovskite which deteriorates the carrier extraction and device stability. Here, a representative design concept for editing the peripheral groups of NDI molecules to achieve multifunctional properties is introduced. The resulting molecule 2,7-bis(2,2,3,3,4,4,4-heptafluorobutyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI-C4F) incorporated with hydrophobic fluorine units contributes to the prevention of excessive molecular aggregation, the improvement of surface wettability and the formation of strong chemical coordination with perovskite precursors. All these features favor retarding the perovskite crystallization and achieving superior buried interfaces, which subsequently promote charge collection and improve the structural compatibility between perovskite and ETMs. The corresponding PSCs based on low-temperature processed NDI-C4F yield a record efficiency of 23.21%, which is the highest reported value for organic ETMs in n-i-p PSCs. More encouragingly, the unencapsulated devices with NDI-C4F demonstrate extraordinary stability by retaining over 90% of their initial PCEs after 2600 h in air. This work provides an alternative molecular strategy to engineer the buried interfaces and can trigger further development of organic ETMs toward reliable PSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423218PMC
http://dx.doi.org/10.1002/advs.202403735DOI Listing

Publication Analysis

Top Keywords

naphthalene diimides
8
electron transport
8
transport materials
8
buried interfaces
8
organic etms
8
perovskite
5
etms
5
fluorinated naphthalene
4
diimides buried
4
buried electron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!