Photopyroelectric-based circularly polarized light (CPL) detection, coupling the pyro-phototronic effect and chiroptical phenomena, has provided a promising platform for high-performance CPL detectors. However, as a novel detection strategy, photopyroelectric-based CPL detection is currently restricted by the short-wave optical response, underscoring the urgent need to extend its response range. Herein, visible-to-near-infrared CPL detection induced by the pyro-phototronic effect is first realized in chiral-polar perovskites. Specifically, chiral-polar multilayered perovskites (S-BPEA)FAPbI (1-S, S-BPEA = (S)-1-4-Bromophenylethylammonium, FA = formamidinium) with spontaneous polarization shows intrinsic pyroelectric and photopyroelectric performance. Strikingly, combining its merits of the pyro-phototronic effect and intrinsic wide-spectrum spin-selective effect, chiral multilayered 1-S presents efficient photopyroelectric-based broadband CPL detection performance spanning 405-785 nm. This research first realizes photopyroelectric-based infrared CPL detection and also sheds light on developing high-performance broadband CPL detectors based on the pyro-phototronic effect in the fields of optics, optoelectronics, and spintronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423216 | PMC |
http://dx.doi.org/10.1002/advs.202404403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!