A Chromogenic In Situ Hybridization (CISH) Assay for Detection of HBV RNA, DNA, and cccDNA in Liver Tissue.

Methods Mol Biol

Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

Published: July 2024

Hepatitis B virus (HBV) developed highly intricates mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. With the aid of a series of classical analytical methods such as ultrafiltration, and Southern and Northern blots, a general framework of HBV life cycle has been established. However, this picture still lacks many key histological contexts which involves pathophysiological changes of hepatocytes, non-parenchymal cells, infiltrated leukocytes, and associated extracellular matrix. Here, we describe a CISH protocol modified from the ViewRNA assay that allows direct visualization of HBV RNA, DNA, and cccDNA in liver tissue of chronic hepatitis B patients. By coupling it with immunohistochemistry and other histological stains, much richer information regarding the HBV-induced pathological changes can be harvested.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4027-2_12DOI Listing

Publication Analysis

Top Keywords

hbv rna
8
rna dna
8
dna cccdna
8
cccdna liver
8
liver tissue
8
chromogenic situ
4
situ hybridization
4
hybridization cish
4
cish assay
4
assay detection
4

Similar Publications

HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication.

Biomolecules

January 2025

Department of Gastroenterology and Hepatology, Erasmus Medical Center, Wytemaweg 80, 3015CN Rotterdam, The Netherlands.

Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment.

View Article and Find Full Text PDF

About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Introduction: Extrachromosomal circular DNA (eccDNA) regulates tumor occurrence and development. Relevant eccDNA profiles have been established for various types of cancer; however, the eccDNA expression profiles in the blood of patients with hepatocellular carcinoma (HCC) and liver cirrhosis (LC) remain unknown. The present study aimed to investigate the eccDNA expression profiles in the blood of patients with HCC and LC.

View Article and Find Full Text PDF

One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!