A biomolecular coating, or biocorona, forms on the surface of engineered nanomaterials (ENMs) immediately as they enter biological or environmental systems, defining their biological and environmental identity and influencing their fate and performance. This biomolecular layer includes proteins (the protein corona) and other biomolecules, such as nucleic acids and metabolites. To ensure a meaningful and reproducible analysis of the ENMs-associated biocorona, it is essential to streamline procedures for its preparation, separation, identification and characterization, so that studies in different labs can be easily compared, and the information collected can be used to predict the composition, dynamics and properties of biocoronas acquired by other ENMs. Most studies focus on the protein corona as proteins are easier to monitor and characterize than other biomolecules and play crucial roles in receptor engagement and signaling; however, metabolites play equally critical roles in signaling. Here we describe how to reproducibly prepare and characterize biomolecule-coated ENMs, noting especially the steps that need optimization for different types of ENMs. The structure and composition of the biocoronas are characterized using general methods (transmission electron microscopy, dynamic light scattering, capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry) as well as advanced techniques, such as transmission electron cryomicroscopy, synchrotron-based X-ray absorption near edge structure and circular dichroism. We also discuss how to use molecular dynamic simulation to study and predict the interaction between ENMs and biomolecules and the resulting biocorona composition. The application of this protocol can provide mechanistic insights into the formation, composition and evolution of the ENM biocorona, ultimately facilitating the biomedical and agricultural application of ENMs and a better understanding of their impact in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-024-01009-8 | DOI Listing |
Am J Cancer Res
December 2024
Department of Hematology, Yantai Yuhuangding Hospital Yantai 264001, Shandong, China.
This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146.
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.
View Article and Find Full Text PDFBiological containment is a critical safeguard for genetically engineered microbes prior to their environmental release to prevent proliferation in unintended regions. However, few biocontainment strategies can support the longer-term microbial survival that may be desired in a target environment without repeated human intervention. Here, we introduce the concept of an orthogonal obligate commensalism for the autonomous creation of environments that are permissive for survival of a biocontained microbe.
View Article and Find Full Text PDFUnlabelled: Evolution of cooperation is a major, extensively studied problem in evolutionary biology. Cooperation is beneficial for a population as a whole but costly for the bearers of social traits such that cheaters enjoy a selective advantage over cooperators. Here we focus on coevolution of cooperators and cheaters in a multi-level selection framework, by modeling competition among groups composed of cooperators and cheaters.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Department of Psychiatry, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
Severe mental disorders are multi-dimensional constructs, resulting from the interaction of genetic, biological, psychosocial, and environmental factors. Among the latter, pollution and climate change are frequently being considered in the etiopathogenesis of severe mental disorders. This systematic review aims to investigate the biological mechanisms behind the relationship between environmental pollutants, climate change, and mental disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!