Computational techniques have significantly advanced our understanding of cardiac electrophysiology, yet they have predominantly concentrated on averaged models that do not represent the intricate dynamics near individual cardiomyocytes. Recently, accurate models representing individual cells have gained popularity, enabling analysis of the electrophysiology at the micrometer level. Here, we evaluate five mathematical models to determine their computational efficiency and physiological fidelity. Our findings reveal that cell-based models introduced in recent literature offer both efficiency and precision for simulating small tissue samples (comprising thousands of cardiomyocytes). Conversely, the traditional bidomain model and its simplified counterpart, the monodomain model, are more appropriate for larger tissue masses (encompassing millions to billions of cardiomyocytes). For simulations requiring detailed parameter variations along individual cell membranes, the EMI model emerges as the only viable choice. This model distinctively accounts for the extracellular (E), membrane (M), and intracellular (I) spaces, providing a comprehensive framework for detailed studies. Nonetheless, the EMI model's applicability to large-scale tissues is limited by its substantial computational demands for subcellular resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266357PMC
http://dx.doi.org/10.1038/s41598-024-67431-wDOI Listing

Publication Analysis

Top Keywords

mathematical models
8
models
5
evaluating computational
4
computational efforts
4
efforts physiological
4
physiological resolution
4
resolution mathematical
4
models cardiac
4
cardiac tissue
4
tissue computational
4

Similar Publications

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Purpose: The aim of this study was to identify prognostic factors influencing overall survival (OS) in patients with gastric cancer treated with adjuvant chemoradiotherapy (CRT) and to develop a predictive model.

Methods: We retrospectively evaluated 245 non-metastatic gastric cancer patients who received adjuvant CRT or radiotherapy from 2010 to 2020. Survival analyses were performed using the Kaplan-Meier method.

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Improving Molecular Design with Direct Inverse Analysis of QSAR/QSPR Model.

Mol Inform

January 2025

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

Recent advances in machine learning have significantly impacted molecular design, notably the molecular generation method combining the chemical variational autoencoder (VAE) with Gaussian mixture regression (GMR). In this method, a mathematical model is constructed with X as the latent variable of the molecule and Y as the target properties and activities. Through direct inverse analysis of this model, it is possible to generate molecules with the desired target properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!