Papain-like protease (PLpro) is an attractive drug target for SARS-CoV-2 because it is essential for viral replication, cleaving viral poly-proteins pp1a and pp1ab, and has de-ubiquitylation and de-ISGylation activities, affecting innate immune responses. We employ Deep Mutational Scanning to evaluate the mutational effects on PLpro enzymatic activity and protein stability in mammalian cells. We confirm features of the active site and identify mutations in neighboring residues that alter activity. We characterize residues responsible for substrate binding and demonstrate that although residues in the blocking loop are remarkably tolerant to mutation, blocking loop flexibility is important for function. We additionally find a connected network of mutations affecting activity that extends far from the active site. We leverage our library to identify drug-escape variants to a common PLpro inhibitor scaffold and predict that plasticity in both the S4 pocket and blocking loop sequence should be considered during the drug design process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266423PMC
http://dx.doi.org/10.1038/s41467-024-50566-9DOI Listing

Publication Analysis

Top Keywords

blocking loop
12
papain-like protease
8
active site
8
mutational profiling
4
profiling sars-cov-2
4
sars-cov-2 papain-like
4
protease reveals
4
reveals requirements
4
requirements function
4
function structure
4

Similar Publications

Tracing the birth and intrinsic disorder of loops and domains in protein evolution.

Biophys Rev

December 2024

Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

Protein loops and structural domains are building blocks of molecular structure. They hold evolutionary memory and are largely responsible for the many functions and processes that drive the living world. Here, we briefly review two decades of phylogenomic data-driven research focusing on the emergence and evolution of these elemental architects of protein structure.

View Article and Find Full Text PDF

NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit.

Nat Commun

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.

Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes.

View Article and Find Full Text PDF

Atrial flutter (AFL), defined as macro-re-entrant atrial tachycardia, is associated with debilitating symptoms, stroke, heart failure, and increased mortality. AFL is classified into typical, or cavotricuspid isthmus (CTI)-dependent, and atypical, or non-CTI-dependent. Atypical AFL is a heterogenous group of re-entrant atrial tachycardias that most commonly occur in patients with prior heart surgery or catheter ablation.

View Article and Find Full Text PDF

Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.

View Article and Find Full Text PDF

To achieve rapid and stable detumbling of a space noncooperative satellite, an adaptive variable admittance control method for the manipulator is proposed and verified through simulation study and the ground experiment. The control block diagram of the proposed method is presented, and the adaptive variable admittance compliant detumbling control model is established. The proposed controller includes the fixed admittance controller in manipulator task space, the adaptive pose compensator for the grasping point on docking ring, and the damping adaptive regulator based on manipulator joint angular velocity, and the stability is proven by the Lyapunov method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!