Biofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ( -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266594PMC
http://dx.doi.org/10.1038/s41598-024-65153-7DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
saturation -pinene
8
mathematical modeling
4
modeling machine
4
machine learning-based
4
learning-based optimization
4
optimization enhancing
4
enhancing biofiltration
4
biofiltration efficiency
4

Similar Publications

Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).

View Article and Find Full Text PDF

Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).

View Article and Find Full Text PDF

Up-flow anaerobic sludge blanket bioreactor for the production of carboxylates: effect of inocula on process performance and microbial communities.

Bioresour Bioprocess

January 2025

Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.

This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.

View Article and Find Full Text PDF

Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity.

View Article and Find Full Text PDF

Background: Cerebral palsy (CP) is the most common permanent neuromotor disorder diagnosed in childhood. Although most cases have unknown etiology, emerging evidence suggests environmental risk factors of CP.

Objectives: We investigated whether ambient toxic air contaminants (TACs) in the maternal residential area during pregnancy, specifically volatile organic compounds (VOCs) and metals, were associated with offspring CP risk in California.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!