Chiral inversion induced by aromatic interactions in short peptide assembly.

Nat Commun

State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China.

Published: July 2024

AI Article Synopsis

Article Abstract

Although hydrophobic interactions provide the main driving force for initial peptide aggregation, their role in regulating suprastructure handedness of higher-order architectures remains largely unknown. We here interrogate the effects of hydrophobic amino acids on handedness at various assembly stages of peptide amphiphiles. Our studies reveal that relative to aliphatic side chains, aromatic side chains set the twisting directions of single β-strands due to their strong steric repulsion to the backbone, and upon packing into multi-stranded β-sheets, the side-chain aromatic interactions between strands form the aromatic ladders with a directional preference. This ordering not only leads to parallel β-sheet arrangements but also induces the chiral flipping over of single β-strands within a β-sheet. In contrast, the lack of orientational hydrophobic interactions in the assembly of aliphatic peptides implies no chiral inversion upon packing into β-sheets. This study opens an avenue to harness peptide aggregates with targeted handedness via aromatic side-chain interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266598PMC
http://dx.doi.org/10.1038/s41467-024-50448-0DOI Listing

Publication Analysis

Top Keywords

chiral inversion
8
aromatic interactions
8
hydrophobic interactions
8
side chains
8
single β-strands
8
aromatic
5
interactions
5
inversion induced
4
induced aromatic
4
interactions short
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!