Objective: Less than half of servicewomen report loss of menses during initial military training. However, self-reported menstrual status may not accurately reflect hypothalamic-pituitary-ovarian (HPO) axis suppression and may underestimate reproductive health consequences of military training. Our aim was to characterise HPO axis function during US Army Basic Combat Training (BCT) in non-hormonal contraceptive-using women and explore potential contributors to HPO axis suppression.
Methods: In this 10-week prospective observational study, we enrolled multi-ethnic women entering BCT. Trainees provided daily first-morning voided urine, and weekly blood samples during BCT. Urinary luteinising hormone, follicle stimulating hormone, and metabolites of estradiol and progesterone were measured by chemiluminescent assays (Siemens Centaur XP) to determine hormone patterns and luteal activity. We measured body composition, via dual-energy X-ray absorptiometry, at the beginning and end of BCT.
Results: Trainees (n=55) were young (mean (95% CI): 22 (22, 23) years) with average body mass index (23.9 (23.1, 24.7) kg/m). Most trainees (78%) reported regular menstrual cycles before BCT. During BCT, 23 (42%) trainees reported regular menses. However, only seven trainees (12.5%) had menstrual cycles with evidence of luteal activity (ELA) (ie, presumed ovulation), all with shortened luteal phases. 41 trainees (75%) showed no ELA (NELA), and 7 (12.5%) were categorised as indeterminant. Overall, women gained body mass and lean mass, but lost fat mass during BCT. Changes in body mass and composition appear unrelated to luteal activity.
Conclusions: Our findings reveal profound HPO axis suppression with NELA in the majority of women during BCT. This HPO axis suppression occurs among women who report normal menstrual cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/bjsports-2023-107716 | DOI Listing |
Int J Mol Med
February 2025
Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
Mental stress may lead to ovarian dysfunction. Psychological stress disrupts ovarian function, leading to adverse fertilization outcomes, premature ovarian insufficiency and decreased ovarian reserve. Furthermore, psychological stress caused by decreased ovarian function and infertility can exacerbate the mental burden.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775 6to piso, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:
The plains vizcacha is a rodent that shows reactivation of the hypothalamic-pituitary-ovary (HPO) axis activity at mid-gestation. This process is enabled by the secretion of hypothalamic gonadotropin-releasing hormone (GnRH) at mid-gestation, followed by follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. However, a decrease in the pituitary GnRH receptor (GnRHR) expression is concomitantly determined.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
The timing of puberty significantly influences subsequent reproductive performance in cattle. N6-methyladenosine (m6A) is a key epigenetic modification involved in the regulation of pubertal onset. However, limited research has investigated alterations in m6A methylation within the hypothalamic-pituitary-ovarian (HPO) axis during the onset of puberty.
View Article and Find Full Text PDFJ Psychosom Obstet Gynaecol
December 2024
Assisted Reproduction Unit, Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Hangzhou, China.
This narrative review explores the relationship between psychological stress and ovulatory disorders, focusing on the molecular mechanisms involved. Ovulation is regulated by the hypothalamus-pituitary-ovarian (HPO) axis, and disruptions in this axis can lead to ovulatory dysfunction. Chronic psychological stress affects the HPO axis, resulting in abnormalities in hypothalamus hormone secretion, pituitary hormone release, and ovarian function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!