Introduction: Conclusive molecular genetic diagnoses in inherited retinal diseases remains a major challenge due to the large number of variants of uncertain significance (VUS) identified in genetic testing. Here, we determined the genotypic and phenotypic spectrum of ABCA4 gene variants in a cohort of Canadian inherited retinal dystrophy subjects.
Methods: This retrospective study evaluated 64 subjects with an inherited retinal dystrophy diagnosis with variants in the ABCA4 gene. Pathogenicity of variants was assessed by comparison to genetic databases and in silico modelling. ABCA4 variants classified as VUS were further evaluated using a cryo-electron structural model of the ABCA4 protein to predict impact on protein function and were also assessed for evolutionary conservation.
Results: Conclusive disease-causing biallelic ABCA4 variants were detected in 52 subjects with either Stargardt's disease, cone-rod dystrophy, macular dystrophy, or pattern dystrophy. A further 14 variants were novel comprising 1 nonsense, 1 frameshift, 3 splicing, and 9 missense variants. Based on in silico modelling, protein modelling and evolutionary conservation from human to zebrafish, we re-classified 5 of these as pathogenic and a further 3 as likely pathogenic. We also added to the ABCA4 phenotypic spectrum seen with four known pathogenic variants (c.2161-2A>G; Leu296Cysfs*4; Arg1640Gln; and Pro1380Leu).
Conclusions: This study expands the genotypic and phenotypic spectrum of ABCA4 disease-associated variants. By panel-based genetic testing, we identified 14 novel ABCA4 variants of which 8 were determined to be disease-causing or likely disease-causing. These methodologies could circumvent somewhat the need for labour intensive in vitro and in vivo assessments of novel ABCA4 variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000540361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!