A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans. | LitMetric

Background: The fatty infiltration and atrophy in the muscle after a rotator cuff (RC) tear are important in surgical decision-making and are linked to poor clinical outcomes after rotator cuff repair. An accurate and reliable quantitative method should be developed to assess the entire RC muscles.

Purpose: To develop a fully automated approach based on a deep neural network to segment RC muscles from clinical magnetic resonance imaging (MRI) scans.

Material And Methods: In total, 94 shoulder MRI scans (mean age = 62.3 years) were utilized for the training and internal validation datasets, while an additional 20 MRI scans (mean age = 62.6 years) were collected from another institution for external validation. An orthopedic surgeon and a radiologist manually segmented muscles and bones as reference masks. Segmentation performance was evaluated using the Dice score, sensitivities, precision, and percent difference in muscle volume (%). In addition, the segmentation performance was assessed based on sex, age, and the presence of a RC tendon tear.

Results: The average Dice score, sensitivities, precision, and percentage difference in muscle volume of the developed algorithm were 0.920, 0.933, 0.912, and 4.58%, respectively, in external validation. There was no difference in the prediction of shoulder muscles, with the exception of teres minor, where significant prediction errors were observed (0.831, 0.854, 0.835, and 10.88%, respectively). The segmentation performance of the algorithm was generally unaffected by age, sex, and the presence of RC tears.

Conclusion: We developed a fully automated deep neural network for RC muscle and bone segmentation with excellent performance from clinical MRI scans.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02841851241262325DOI Listing

Publication Analysis

Top Keywords

fully automated
12
rotator cuff
12
mri scans
12
segmentation performance
12
muscles clinical
8
deep neural
8
neural network
8
scans age
8
external validation
8
dice score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!