The H9N2 subtype of the avian influenza virus (AIV) is widely prevalent in birds, threatening the poultry industry and providing genetic material for emerging human pathogens. The prevalence and genetic characteristics of H9N2 in Yunnan Province, China, are largely unknown. Samples were collected from live poultry markets (LPMs) and breeding farms in Yunnan Province. H9N2-positive samples were identified by polymerase chain reaction (PCR), with a high positivity rate of 42.86% in tissue samples. The positivity rate of swab samples in the LPMs in Kunming was 3.97% (17/564), but no AIV was detected in samples from poultry farms in Lijiang, Wenshan, and Yuxi. Evolutionary analysis and genotyping were performed for the 17 strains of isolated H9N2 virus. Phylogenetic analysis revealed that all H9N2 viral genes had 91.6%-100% nucleotide homology, belonged to the G57 genotype, and had high homology with H9N2 viruses isolated from Guangdong and Guangxi, suggesting that the H9N2 viruses in Yunnan Province may have been imported by chicks. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to evolve. The surface genes of the H9N2 isolates displayed substantial genetic diversity, highlighting the genetic diversity and complexity of the H9N2-subtype AIVs in Yunnan. Molecular analysis demonstrated that all 17 strains of H9N2 isolates had mutations at H183N, Q226L, L31P, and I268V in hemagglutinin; S31N in matrix protein 2; and no replacements at positions 274 and 292 of the neuraminidase protein. Sixteen strains had the A558V mutation and one strain had the E627V mutation in polymerase basic protein 2. Analysis of these amino acid sites suggests that H9N2 influenza viruses in Yunnan continue to mutate and adapt to mammals and are sensitive to neuraminidase inhibitors but resistant to adamantanes. It is necessary to strengthen surveillance of AIV H9N2 subtypes in poultry and LPMs in Yunnan to further understand their genetic diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318558 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.104040 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
School of Basic Medicine, Dali University, Dali, 671003, Yunnan, China.
Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFUrsodeoxycholic acid (UDCA) is the first-line treatment for primary biliary cholangitis (PBC), but 20-40% of patients do not respond well to UDCA. We aimed to develop and validate a prognostic model for the early prediction of patients who nonresponse to UDCA. This retrospective analysis was conducted among patients with primary biliary cholangitis(N = 257) to develop a predictive model for early-stage nonresponse to ursodeoxycholic acid (UDCA) therapy.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China. Electronic address:
There are abundant glycosylated substances such as cellulose, hemicellulose, and phytochemical glycosides in plants, which could be converted into functional chemicals such as monosaccharides, oligosaccharides, and bioactive aglycones by cleavage of glycosidic bonds using glycoside hydrolases (GHs). Among those GHs, β-glucosidase and β-xylosidase are the rate-limiting enzymes for degrading cellulose and hemicellulose, respectively, and can convert a variety of glycosylated substances. These two enzymes play important roles in the high value use of plant resources and have great potential applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!