Engineered for Long-Term Oral Enzyme Delivery.

Langmuir

School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.

Published: August 2024

Intestinal flora shows excellent affinity in the gut, and the adhesive property is borrowed for oral drug delivery. A facile strategy for bacteria engineering has been successfully developed by introducing metal-organic framework (MOF) mineralization. The MOF exoskeleton serves as an extendable platform for accommodating various cargoes with good morphology maintained. The artificial exoskeleton surrounding is employed for encapsulating macromolecules as a therapeutic cargo, maintaining good bioactivity with high immobilization efficiency (60%) after systematic optimization of the MOF precursor. Leveraging the natural affinity of in the gut, the in-vivo tracking of MOF-engineered in the gastrointestinal tract confirmed excellent adhesion to the GI mucosa and a 17.9-fold increase in the gut retention half-time, demonstrating significant advantages in retention capability. In comparison, the control group without equipment resulted in quick gut passage. Furthermore, the artificially engineered serves as an effective carrier for macromolecules without notable oral toxicity, as evidenced by biocompatibility evaluations in cells and animals. Overall, the MOF-engineered provides an extendable platform for loading on-demand cargoes in versatile therapeutic functions with promising clinical transnationality for long-term applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01253DOI Listing

Publication Analysis

Top Keywords

affinity gut
8
extendable platform
8
engineered long-term
4
long-term oral
4
oral enzyme
4
enzyme delivery
4
delivery intestinal
4
intestinal flora
4
flora excellent
4
excellent affinity
4

Similar Publications

Lycium barbarum polysaccharide (LBP) is a prebiotic that promotes the proliferation of beneficial bacteria, but lacks of regulatory function on harmful bacteria. In this study, chlorogenic acid (CGA) was used to achieve the functional enhancement of two LBPs (LBP-A and LBP-M). The combination of CGA resulted in changes in the solution properties of LBPs, manifested as increased pseudoplasticity, viscosity, turbidity, and decreased water mobility, absolute potential value, pH value.

View Article and Find Full Text PDF

This study explored the therapeutic potential of gut microbiota metabolites in managing Gestational Diabetes Mellitus (GDM). Using network pharmacology, molecular docking, and dynamics simulations, we identified key targets and pathways involved in GDM. We screened 135 gut-derived metabolites, with 8 meeting drug-likeness and pharmacokinetic criteria.

View Article and Find Full Text PDF

In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions.

View Article and Find Full Text PDF

Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways.

View Article and Find Full Text PDF

Development of plantaricin RX-8 loaded pectin/4-carboxyphenylboric acid/carboxymethyl chitosan hydrogel microbead: A potential targeted oral delivery system.

Int J Biol Macromol

December 2024

School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Bacteriocin can effectively improve the gut inflammation for their superior antibacterial activity. However, its inherent attributes, such as easily degraded and off-target effect in the gastrointestinal environment, make bacteriocins' efficient oral delivery a great challenge. Herein, a pectin/4-carboxyphenylboric acid/carboxymethyl chitosan (PEC/CPBA/CMCS) hydrogel microbead targeted oral delivery system was innovatively developed for the plantaricin RX-8 protective delivery, precisely targeted inflammatory microenvironment (IME) and sustained released plantaricin RX-8 by pH/ROS dual stimulation response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!