The spin degrees of freedom is crucial for the understanding of any condensed matter system. Knowledge of spin-mixing mechanisms is not only essential for successful control and manipulation of spin qubits, but also uncovers fundamental properties of investigated devices and material. For electrostatically defined bilayer graphene quantum dots, in which recent studies report spin-relaxation times T_{1} up to 50 ms with strong magnetic field dependence, we study spin-blockade phenomena at charge configuration (1,2)↔(0,3). We examine the dependence of the spin-blockade leakage current on interdot tunnel coupling and on the magnitude and orientation of externally applied magnetic field. In out-of-plane magnetic field, the observed zero-field current peak could arise from finite-temperature cotunneling with the leads; though involvement of additional spin- and valley-mixing mechanisms are necessary for explaining the persistent sharp side peaks observed. In in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit interaction. Details of the line shape of this current dip, however, suggest additional underlying mechanisms are at play.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.017001DOI Listing

Publication Analysis

Top Keywords

magnetic field
16
bilayer graphene
8
quantum dots
8
zero-field current
8
current dip
8
three-carrier spin
4
spin blockade
4
blockade coupling
4
coupling bilayer
4
graphene double
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!