Reduction of amyloid beta (Aβ) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aβ is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aβ in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aβ production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aβ production could be a promising therapeutic strategy for treating AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265669 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3002727 | DOI Listing |
Brain Commun
January 2025
Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2.
Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau, p-tau and p-tau) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field.
View Article and Find Full Text PDFBrain Commun
January 2025
Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany.
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
Alzheimer's disease (AD) is a neurodegenerative disorder clinically characterized by progressive decline of memory and cognitive functions, and it is the leading cause of dementia accounting for 60%-80% of dementia patients. A pathological hallmark of AD is the accumulation of aberrant protein/peptide aggregates such as extracellular amyloid plaques containing amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. These aggregates result from the failure of the proteostasis network, which encompasses protein synthesis, folding, and degradation processes.
View Article and Find Full Text PDFAmyloid β (Aβ) has emerged as a pathophysiological driver in age-related macular degeneration (AMD), emphasizing its significance in the aetiology of this prevalent sight-threatening condition. The multifaceted nature of AMD pathophysiology, presumably involving diverse retinal cascades, corresponds with the complexity of Aβ-induced retinopathy. Therefore, targeting a broad array of pathogenic processes holds promise for therapeutic intervention in AMD-associated retinal pathology.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!