Toxicology and Pharmacological Interactions of Classic Psychedelics.

Curr Top Behav Neurosci

Clinical Sciences, Touro University California College of Pharmacy, Vallejo, CA, USA.

Published: July 2024

AI Article Synopsis

  • The chapter focuses on the safety concerns linked to psychedelics being explored for medical use, highlighting the need to understand their adverse effects.
  • It summarizes key toxicological information and potential interactions between classic psychedelics and other medications.
  • The psychedelics covered include LSD, psilocybin, DMT, 5-MeO-DMT, mescaline, 2C-B, Bromo-DragonFLY, and 25X-NBOMe.

Article Abstract

As psychedelics are being investigated for more medical indications, it has become important to characterize the adverse effects and pharmacological interactions with these medications. This chapter will summarize what is known about the toxicology and drug-drug interactions for classic psychedelics, such as LSD, psilocybin, DMT, 5-MeO-DMT, mescaline, 2C-B, Bromo-DragonFLY, and 25X-NBOMe.

Download full-text PDF

Source
http://dx.doi.org/10.1007/7854_2024_508DOI Listing

Publication Analysis

Top Keywords

pharmacological interactions
8
interactions classic
8
classic psychedelics
8
toxicology pharmacological
4
psychedelics psychedelics
4
psychedelics investigated
4
investigated medical
4
medical indications
4
indications characterize
4
characterize adverse
4

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!