A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In situ interfacial evaluation of aramid/epoxy composites by interfacial stress transfer characteristics. | LitMetric

AI Article Synopsis

  • Interfacial bonding between aramid fibers and epoxy resin significantly impacts the mechanical strength of fiber-reinforced epoxy composites, as it governs stress transfer at both small and large scales.
  • The study employs micro-Raman spectroscopy for real-time stress measurement to analyze how stress distributes at the interface when subjected to loads.
  • A novel evaluation method using finite element analysis (FEA) is presented, showing that the derived interface modulus effectively characterizes bonding quality and is validated by comparisons with transverse fiber bundle tests.

Article Abstract

Interfacial bonding between aramid fibers and epoxy resin is crucial for the mechanical properties of fiber-reinforced epoxy composites. Interfacial stress transfer between resin and fibers bridges microscopic and macroscopic properties. Using micro-Raman spectroscopy for in situ stress measurement offers insights into interface bonding through assessment of interfacial stress transfer characteristics. This study measures stress distribution on loaded microdroplet sample surfaces, analyzes stress transfer at the interface, and proposes an evaluation method using finite element analysis (FEA). The results show that interfacial stress along the fiber decreases from the droplet's edge to center, indicating stress transfer between the fiber and matrix, as evidenced by the stress-dependent Raman shift of aramid fiber. The interface modulus (Eif), derived from the FEA model, effectively reflects interface bonding, with droplet shape influence removed in evaluations. The agreement between the proposed method and the transverse fiber bundle test confirms its applicability. The method offers a direct, non-destructive, and shape-independent way to evaluate the interface of aramid/epoxy composites.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0211875DOI Listing

Publication Analysis

Top Keywords

stress transfer
20
interfacial stress
16
aramid/epoxy composites
8
composites interfacial
8
stress
8
transfer characteristics
8
interface bonding
8
interfacial
5
transfer
5
interface
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!