African swine fever (ASF) is a highly contagious and severe hemorrhagic disease caused by the African swine fever virus (ASFV). The continuous spread of ASFV affects the safety of the global meat supply; therefore, the establishment of sensitive and specific detection methods for ASFV has become an important hot spot in food safety. Herein, we developed a flexible magnetoelastic (ME) biosensor based on PDMS/FeSiB/QDs composite films for the detection of ASFV P72 protein. Based on the high luminescence performance of CsPbBr quantum dots and the excellent magnetoelastic effect of FeSiB, flexible ME biosensors convert stress signals generated by antibody-antigen-specific binding into optical and electromagnetic signals. The nanostructures covalently linked by quantum dots and PDMS provide biomodification sites for ASFV P72 antibodies, simplifying the functionalization modification process compared to the case of conventional biosensors. The deformation of the PDMS film is amplified, and the conversion of surface stress signals to electrical signals is enhanced by exposing the biosensor to a uniform magnetic field. The experimental results proved that the flexible ME biosensor has a wide linear range of 10 ng mL-100 μg mL, and the detection limit is as low as 0.079 ng mL. Moreover, the flexible ME biosensor also shows good stability, sensitivity and specificity, confirming the potential for early disease screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay01057d | DOI Listing |
Biosens Bioelectron
January 2025
Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA. Electronic address:
African Swine Fever Virus (ASFV) is a highly contagious pathogen with nearly 100% mortality in swine, causing severe global economic loss. Current detection methods rely on nucleic acid amplification, which requires specialized equipment and skilled operators, limiting accessibility in resource-constrained settings. To address these challenges, we developed the Covalently Immobilized Magnetic Nanoparticles Enhanced CRISPR (CIMNE-CRISPR) system.
View Article and Find Full Text PDFInt J Pharm
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.. Electronic address:
Background: African swine fever (ASF) is a highly contagious disease, and the core-shell protein p34 is an important antigen that can induce immune responses. The use of ferritin nanoparticles for the orderly and repetitive display of antigens on the particle surface can improve the immunogenicity of subunit vaccines. Here, we used the SpyCatcher/Spytag system to conjugate ferritin nanoparticles with the p34 protein (F-p34).
View Article and Find Full Text PDFiScience
January 2025
Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .
View Article and Find Full Text PDFVet Res Commun
January 2025
Veterinary Research Institute (VRI), 59 Jalan Sultan Azlan Shah, 31400, Ipoh, Perak, Malaysia.
African swine fever (ASF), a severe and highly contagious haemorrhagic viral disease of pigs, is becoming a major threat not only in Malaysia but around the world. The first confirmed case of ASF in Malaysia was reported in February 2021. Despite the emergence of ASF in Malaysia, genetic information on this causative pathogen for the local livestock is still limited.
View Article and Find Full Text PDFVet Res Forum
November 2024
Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India.
African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!