Unlabelled: Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remain unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We identify ApbE flavinylation sites within structurally diverse protein domains and show that multi-flavinylated proteins, which may mediate longer distance electron transfer via multiple flavinylation sites, exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models.

Importance: This study explores the mechanisms bacteria use to transfer electrons outside the cytosol, a fundamental process involved in energy metabolism and environmental interactions. Central to this process is a phenomenon known as flavinylation, where a flavin molecule-a compound related to vitamin B2-is covalently attached to proteins, to enable electron transfer. We employed advanced genomic analysis and computational modeling to explore how this modification occurs across different bacterial species. Our findings uncover new types of proteins that undergo this modification and highlight the diversity and complexity of bacterial electron transfer mechanisms. This research broadens our understanding of bacterial physiology and informs potential biotechnological applications that rely on microbial electron transfer, including bioenergy production and bioremediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334425PMC
http://dx.doi.org/10.1128/msystems.00375-24DOI Listing

Publication Analysis

Top Keywords

electron transfer
32
protein flavinylation
12
flavinylation bacterial
12
flavinylation
9
transfer
9
electron
8
bound flavins
8
bacterial physiology
8
apbe flavinylation
8
flavinylation sites
8

Similar Publications

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.

View Article and Find Full Text PDF

Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.

View Article and Find Full Text PDF

Benzotrithiophene-based covalent organic frameworks for sensitive fluorescence detection and efficient removal of Ag from drinking water.

Talanta

December 2024

Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:

The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

Epinephrine (Ep) is an important neurotransmitter, which plays an important role in the nervous system and glycogen metabolism of living organisms. Hence, a novel NCQDs/FeCoFe-PBA composite with FeCoFe-Prussian blue analogues (PBA) as the core and nitrogen-doped carbon quantum dots (NCQDs) as the shell was constructed by a one-pot hydrothermal method, and it was used for the efficient detection of Ep. As a good electroactive material, NCQDs in the composite not only improved the weak conductivity of FeCoFe-PBA, but also limited the self-aggregation of FeCoFe-PBA, and formed a uniform shell on FeCoFe-PBA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!