Targeting dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has been verified to regulate the progression of tau pathology as a promising treatment for Alzheimer's disease (AD), while the research progress on DYRK1A inhibitors seemed to be in a bottleneck period. In this work, we identified () as the most potential DYRK1A inhibitor (IC = 0.68 nM) through rational design, systematic structural optimization, and comprehensive evaluation. Compound exhibited acceptable absorption, distribution, metabolism, and excretion (ADME) properties and significantly reduced the expression of p-Tau Thr212 in Tau (P301L) 293T cells and SH-SY5Y cells. Moreover, compound showed favorable bioavailability, blood-brain barrier (BBB) permeability, and the potential of ameliorating cognitive dysfunction by obviously reducing the expression of phosphorylated tau and neuronal loss , which was deserved as a valuable molecular tool to reveal the role of DYRK1A in the pathogenesis of AD and to further promote the development of anti-AD drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c00483DOI Listing

Publication Analysis

Top Keywords

dual-specificity tyrosine
8
tyrosine phosphorylation-regulated
8
phosphorylation-regulated kinase
8
treatment alzheimer's
8
alzheimer's disease
8
discovery zjck-6-46
4
zjck-6-46 potent
4
potent selective
4
selective orally
4
orally dual-specificity
4

Similar Publications

Introduction: Lorecivivint (LOR), a CDC-like kinase/dual-specificity tyrosine kinase (CLK/DYRK) inhibitor thought to modulate inflammatory and Wnt pathways, is being developed as a potential intra-articular knee osteoarthritis (OA) treatment. The objective of this trial was to evaluate long-term safety of LOR within an observational extension of two phase 2 trials.

Methods: This 60-month, observational extension study (NCT02951026) of a 12-month phase 2a trial (NCT02536833) and 6-month phase 2b trial (NCT03122860) was administratively closed after 36 months as data inferences became limited.

View Article and Find Full Text PDF

Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment.

Protein Pept Lett

December 2024

Department of Pharm. Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.

Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD.

View Article and Find Full Text PDF

Cdc2-like kinase 1 (CLK1) has dual-specificity kinase ability to phosphorylate tyrosine and serine/threonine protein residues. CLK1 regulates many physiological processes and has been shown to contribute to multiple types of cancer. Here, we investigated the functional role of CLK1 during intrahepatic cholangiocarcinoma (ICC) development.

View Article and Find Full Text PDF

Background: Breast cancer (BC) poses a significant global health challenge, with chemotherapy resistance, especially to docetaxel, remaining a major obstacle in effective treatment. The molecular mechanisms underlying this resistance are critical for developing targeted therapeutic strategies.

Objective: This study aims to explore the role of dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2), a member of the DYRK family, in docetaxel resistance in breast cancer cells and investigate its impact on cellular responses, including drug sensitivity and migration.

View Article and Find Full Text PDF

Fungi play irreplaceable roles in the functioning of natural ecosystems, but global warming poses a significant threat to them. However, the mechanisms underlying fungal tolerance to thermal and UV-B stresses remain largely unknown. Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) Pom1 is crucial for fungal growth, conidiation, and virulence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!