A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TRPV4 subserves physiological and pathological elevations in intraocular pressure. | LitMetric

Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased and outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261973PMC
http://dx.doi.org/10.21203/rs.3.rs-4714050/v1DOI Listing

Publication Analysis

Top Keywords

physiological pathological
8
intraocular pressure
8
iridocorneal angle
8
iop lowering
8
oht
5
iop
5
trpv4
4
trpv4 subserves
4
subserves physiological
4
pathological elevations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!